• Title/Summary/Keyword: a anti-lock brake system

Search Result 47, Processing Time 0.024 seconds

MAXIMUM BRAKING FORCE CONTROL UTILIZING THE ESTIMATED BRAKING FORCE

  • Hong, D.;Hwang, I.;SunWoo, M.;Huh, K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.2
    • /
    • pp.211-217
    • /
    • 2007
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional ABS (Anti-lock Brake System) systems. In realizing the wheel slip control systems, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance and stability enhancement. In this paper, a robust wheel slip controller is developed based on the adaptive sliding mode control method and an optimal target slip assignment algorithm is proposed for maximizing the braking force. An adaptive law is formulated to estimate the braking force in real-time. The wheel slip controller is designed based on the Lyapunov stability theory considering the error bounds in estimating the braking force and the brake disk-pad friction coefficient. The target slip assignment algorithm searches for the optimal target slip value based on the estimated braking force. The performance of the proposed wheel slip control system is verified in HILS (Hardware-In-the-Loop Simulator) experiments and demonstrates the effectiveness of the wheel slip control in various road conditions.

A Study on Development of Real-Time Simulator for Electric Traction Control System (TCS(Traction Control System)을 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2019
  • The automotive market has recently been investing much time and costs in improving existing technologies such as ABS (Anti-lock Braking System) and TCS (Traction Control System) and developing new technologies. Additionally, various methods have been applied and developed to reduce this. Among them, the development method using the simulation has been mainly used and developed. In this paper, we have studied a method to develop SILS (Software In the Loop Simulation) for TCS which can test various environment variables under the same conditions. We modeled hardware (vehicle engine and ABS module) and software (control logic) of TCS using MATLAB/Simulink and Carsim. Simulation was performed on the climate, road surface, driving course, etc. to verify the TCS logic. By using SILS to develop TCS control logic and controller, it is possible to verify before production and reduce the development period, manpower and investment costs.

A Study on the Performance Improvement and Simplification of the Modulator for Vehicle Stability Control System (차량 안정성 제어 시스템의 모듈레이터 성능개선 및 단순화에 관한 연구)

  • 이종찬;송창섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.84-93
    • /
    • 2004
  • This study carries out the performance improvement and simplification of hydraulic modulator that plays an important role in vehicle stability control systems. The mathematical models for each component of a modulator, such as pump, wheel cylinder, check and solenoid valve, accumulator, damper are derived in detail. All the mathematical models are combined to form a modulator system and implemented through a computer program, which can be controlled by a user friendly GUI. To verity the simulation, comparison between simulation and experiments has been made. After the verification of the validity of the simulation, the effects of the design parameters of the modulator on the wheel cylinder pressure is investigated. The results show that the modulator without MPA has advantage in early time pressure rise rate, and it can be simplified.

Analysis of the Characteristics of ASMS Hydraulic Modulator (Automotive Stability Management System) (차량 안정성 제어용 유압 모듈레이터의 특성 해석)

  • Song, Chang-Seop;Kim, Hyoung-Tae;Shin, Sang-Won;Jeong, Tae-Chun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.127-133
    • /
    • 2001
  • In this study, the effect of the factors of a hydraulic modulator of ASMS was analysed. The modeling of ASMS was presented and the equation of ASMS was derived from the modeling. With this background, GUI analysis tool was developed. After the verification of the reasonability of simulation, the response of a hydraulic modulator is investigated through simulation of modeling. With this simulation, each behavior was predicted with changing the various parameters and determined the influenced factors to apply the designing process.

  • PDF

Using an ABS Controller and Rear Wheel Controller for Stability Improvement of a Vehicle (ABS 제어 및 후륜조향 제어기를 이용한 차량 안정성 개선에 관한 연구)

  • Song, Jeong-Hoon;Boo, Kwang-Suck;Lee, Jong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1125-1134
    • /
    • 2004
  • This paper presents a mathematical model which is about the dynamics of not only a two wheel steering vehicle but a four wheel steering vehicle. A sliding mode ABS control strategy and PID rear wheel control logic are developed to improve the brake and cornering performances, and enhance the stability during emergency maneuvers. The performances of the controllers are evaluated under the various driving road conditions and driving situations. The numerical study shows that the proposed full car model is sufficient to accurately predict the vehicle response. The proposed ABS controller reduces the stopping distance and increases the vehicle stability. The results also prove that the ABS controller can be employed to a four wheel steering vehicle and improves its performance. The four wheel steering vehicle with PID rear wheel controller shows increase of stability when a vehicle speed is high and sharp cornering maneuver when a vehicle speed is low compared to that of a two wheel steer vehicle.

Development and Performance Evaluation of ESP Systems for Enhancing the Lateral Stability During Cornering (차량의 선회시 주행 안정성 강화를 위한 ESP 시스템 개발 및 성능 평가)

  • Boo Kwang-Suck;Song Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1276-1283
    • /
    • 2006
  • This study proposes two ESP systems which are designed to enhance the lateral stability of a vehicle. A BESP uses an inner rear wheel braking pressure controller, while a EBESP employs an inner rear wheel and front outer wheel braking pressure controller. The performances of the BESP and EBESP are evaluated for various road conditions and steering inputs. They reduce the slip angle and eliminate variation in the lateral acceleration, which increase the controllability and stability of the vehicle. However EBESP enhances the lateral stability and comfort. A driver model is also developed to control the steer angle input. It shows good performances because the vehicle tracks the desired lane very well.

A COOPERATIVE CONTROL FOR CAR SUSPENSION AND BRAKE SYSTEMS

  • Nouillant, C.;Assadian, F.;Moreau, X.;Oustaloup, A.
    • International Journal of Automotive Technology
    • /
    • v.3 no.4
    • /
    • pp.147-155
    • /
    • 2002
  • Mechatronic subsystems are more and more developed in automotive industries. To enhance the local controls performances, a cooperative control between ABS and Suspension systems is proposed. The respective controls are first designed separately with their dedicated models. Then a hybrid hierarchical architecture is developed. The advantage of this architecture is discussed through vehicle performance with simulation results.

A Study on the Characteristics of Giant Magneto Resistance using Multi Layers (다층막을 이용한 거대자기저항(GMR)의 특성 연구)

  • Kim, Byeong-Woo;Lee, Young-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.113-118
    • /
    • 2008
  • We have developed an integrated giant magneto resistance using not only circuit but also integrating technique with semiconductor for automobile application. It has four elements used for giant magneto resistance sensor. Ni-Fe/Cu multi layers were prepared on a glass substrate by magnetron sputtering. The dependence of magneto resistance on the thickness of the Ni-Fe and Cu layers was investigated. The MR ratio showed a saturated a peak at Cu layer $10{\AA}$, Ni-Fe layer $50{\AA}$, where the MR ratio is about 8.7% at room temperature. By means of Ni-Fe multi film and specific integrating technique, these new giant magneto resistance sensor showed excellent resistance characteristics.

A Study of Magnetic Properties of 410L Stainless Steel for Manufacture of ABS Sensor Ring (410L 스테인레스 강의 ARS 센서 링 제조를 위한 자기적 특성에 관한 연구)

  • 양현수;곽창섭;임종국
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.29-39
    • /
    • 1998
  • It is well known for 410L ferritic stainless steel powder to applicate a sensor ring in anti-lock brake system of automobile, several studies, because of its excellent magnetic properties. This study was carried out In investigate the magnetic properties such as the maximum magnetic induction, coercivity and maximum permeability of the materials with functions of sintering density! time and temperature, and concluded as follows; 1. Sintering under the circumstances of hydrogen gas and tile temperature of $1250^{\circ}C$ for 60min. showed that nitrogen was increased, whereas carbon and oxygen decreased in quantities. 2. Both maximum magnetic induction value of 4700Gauss and permeability of 200 were obtained at the maximum sintering density of 6.89g/$cm^3$. Here, the properties showed a linear increasement with increasing the sintering density. 3. Coercivity sharply increased with incresing the sintering density and reached to 7.6Oe at the maximum sintering density of 6.89g/$cm^3$.

  • PDF

A Development of Effective Educational Simulator for Electronic Control System of Automobile Chassis (섀시 전자제어 시스템의 효과적인 교육을 위한 능동형 시뮬레이터의 개발)

  • Son, Il-Moon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3326-3333
    • /
    • 2012
  • In this paper, an educational simulator of automobile chassis electronic control system was developed. The developed system is composed of three parts, a driving condition control & monitoring system, a chassis electronic system monitoring & analysis system, and a virtual simulator & educational multimedia contents. The driving condition control & monitoring system has a commercial real car simulator, hydraulic equipments for representing driving conditions, and a remote control and monitoring system. In the chassis electronic system monitoring & analysis system, information of various sensors and actuators applied to the system can be monitored by Labview programs. Finally, the suggested virtual simulator and the multimedia with 2D Flash and 3D animations can be used effectively by means of teaching materials.