• Title/Summary/Keyword: a Photovoltaic System

Search Result 1,629, Processing Time 0.025 seconds

Performance of Photovoltaic Module according to Non-Uniform Azimuth (비동일한 방위각에 의한 PV모듈의 발전성능)

  • Kim, Hyun-Il;Park, Kyung-Eun;Lee, Ki-Ok;Kang, Gi-Hwan;Yu, Gwon-Jong;Suh, Sung-Jik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.303-308
    • /
    • 2009
  • In 2008, the global photovoltaic(PV) market reached 5.6GW and the cumulative PV power installed totalled almost 15GW compared to 9GW in 2007. Due to a favourable feed-in-tariff, Korea emerged in 2008 as the 4th largest PV market worldwide. PV power installation rose 495.5 percent to 268MW in 2008 compare to 45MW in 2007. However many PV systems are not installed in suitable part which is concerned about geometrical factor. It is generally recognized that the actual output of PV system in field is a function of orientation, tilt angle, irradiance, temperature, soiling and various system-related losses. Thus this paper shows that a experimental result of PV modules(A group) with uniform azimuth angle and PV modules(B group) with non-uniform azimuth angle. As a result, the electrical output of B group is decreased 48.8% as compared with electrical output of A group.

  • PDF

DC Link Switch Loss Analyses according to Circuit Structures of the Boost Converter for Photovoltaic Generation System (태양광 발전 시스템을 위한 부스트 컨버터의 회로 구성에 따른 직류측 스위치 손실 분석)

  • Lee, Seung-Yo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.4
    • /
    • pp.192-198
    • /
    • 2012
  • Switch losses directly affect the efficiency of power conversion systems and those have big differences according to the power consumed by load systems and the structures of power conversion circuits. In this paper, analyses for switch losses in DC link converter are performed based on the circuit structures of the DC/DC converter in photovoltaic generation system whose output power is varied according to the amount of solar radiation, temperature and partial shade on the solar modules. Boost converter is adopted as a DC link converter topology of the photovoltaic generation system and the loss analyses for the switches used in the boost converters are performed according to the circuit structures. Analyses like the things performed in this paper will be a prerequisite to designing the photovoltaic generation system whose output power is changed according to the environmental variations.

A Study on the Operating Characteristics for a Grid-Connected Photovoltaic Power System (계통연계형 태양광 발전시스템의 운전특성에 관한 연구)

  • Ahn, K.S.;Hwang, I.H.;Jeong, S.J.;Lim, H.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07g
    • /
    • pp.2436-2438
    • /
    • 1998
  • The operating characteristics of a 3 kW grid-connected photovoltaic (PV) power system was studied by analying annual photovoltaic data. The system performance for grid connection was investigated using a DC/ AC inverter. The results of a demonstration test show that the system utilization rate is 15.6% and the system efficiency is 8.03%.

  • PDF

A Performance Analysis On Designed Value Of Photovoltaic System (태양광 발전시스템의 설계치에 대한 성능 비교분석)

  • So, J.H.;Yu, G.J.;Gang, G.H.;Lee, J.K.;Seok, J.K.;Choi, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1319-1321
    • /
    • 2002
  • This paper compares the performances of photovoltaic system by computer simulation with those of real photovoltaic system. We evaluate the performances of photovoltaic system by computer simulation considering system parameters of system specifications, installation and surrounding conditions etc. In the future, we will intend to develop an analysis tools and construct database for optimal design of photovoltaic system

  • PDF

An Experimental Study on Plant Factory System Applied Photovoltaic System and LED Lighting (태양전지와 LED 조명을 이용한 가정용식물공장 시스템 실증시험)

  • Yang, Jun-Woo;Chung, Dong-Yeol;Kim, Jeong-Yeol;Peck, Jong-Hyeon
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.37-40
    • /
    • 2013
  • Plant factory industry as a new agriculture is in the spotlight. In this paper, we experimented plant factory applied photovoltaic system and LED lighting. For growing the plant, red, blue and white LED were placed into 1:4:3. Electric power generated by the photovoltaic system was supplied on DC power supply instead of AC. The designed and experimented power generation amount per day of photovoltaic system were 2,860 Wh and 2,272 Wh respectively. Plant has not been grown at the dead space of LED lighting so it is required to array LED lighting.

  • PDF

An Efficiency Improvement of the Photovoltaic Generation System by Using the PPT based MPPT Converter (PPT 기반 MPPT 컨버터에 의한 태양광 발전시스템의 효율 개선)

  • Lee, Eun-Chul;Lee, Seong-Ryong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.4
    • /
    • pp.216-223
    • /
    • 2006
  • In this paper, a methodology for the efficiency improvement of the photovoltaic system without adding some elements or increasing the cost comparing with the conventional system is discussed. It is suggested the optimal photovoltaic module configuration through its performance analysis, and also the suitable maximum power point tracking (MPPT) voltage considered the system cost and the efficiency of the converter. The high efficiency photovoltaic system by using the parallel power transfer (PPT) based MPPT converter is proposed and analyzed theoretically comparing with the conventional Buck type MPPT converter. Finally, it is designed and implemented the proposed photovoltaic system for supplying DC 48V by using the PPT based MPPT converter. And the effect of the efficiency improvement and the usefulness of the proposed system is proved through some preliminary simulation and experiment results.

A Novel Photovoltaic Power Generation System including the Function of Shunt Active Filter

  • Park, Minwon;Seong, Nak-Gueon;Yu, In-Keun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.2
    • /
    • pp.103-110
    • /
    • 2003
  • With significant development of power electronics technology, the proliferation of nonlinear loads such as static power converters has deteriorated power quality in power transmission and distribution systems. Notably, voltage harmonics resulting from current harmonics produced by the nonlinear loads have become a serious problem in many countries. Many photovoltaic power generation systems installed in building systems have harmonics that are the worst object for distribution systems as a utility interactive system, and it tends to spread out continuously. Proposed and implemented in this paper is a multi-function inverter control strategy that allows a shunt active filter function to the power inverter of the photovoltaic power generation system established on a building system. The effectiveness of the proposed system is demonstrated through the simulation of a hypothetical power system using PSCAD/EMTDC.

A Study on the Direction of Resident Acceptability for Photovoltaic System in Rural region - A Case of the rural village in Munback-myeon, Jincheon-gun, Chungbuk - (농촌지역 태양광발전 주민수용성 방향에 관한 조사 분석 연구 - 충북 진천군 문백면 농촌마을을 중심으로 -)

  • Park, Mi-Lan;Shin, Seung-Wook;Oh, Si-Doek;Kang, Soo-Hyun
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.21 no.3
    • /
    • pp.77-84
    • /
    • 2019
  • In this study, we classified and analyzed the type and cause of resident conflicts and made a solution at side of resident through resident survey study for research subjects located at photovoltaic system will be installed or not. The factors of resident conflicts based on news media release from 2006 to 2018 were classified to four types such as economic, environmental, technological and procedural factors. According to the news analysis, the types and proportion of resident conflicts in the photovoltaic system projects showed 33% of economic factors, 32% of environmental factor, 21% of technological factor and 14% of procedural factor. This news analysis may suggest that it is very important residents to share the economic benefits as well as to ensure the fairness of the procedures for carrying out the project based on transparent information disclosure during the business promotion and profit distribution stages. We conducted the poll survey in the rural towns where photovoltaic system will be installed or not. The poll survey results showed that (i) there is quite difference in agreement rate and other recognition for sensitive matters such as profit distribution, environmental and technological factors whether photovoltaic system will be installed or not, (ii) the resident conflict regarding the photovoltaic system installation can reduce through direct involvement of residents process. To solve these resident conflicts, the local governments should mainly effort and consider the supporting technologies and consults to solve clearly resident conflicts. In addition, it has to advertise the safety of photovoltaic systems regarding electromagnetic wave which were within the range of scientifically harmless to the human body.

Performance Evaluation and Technical Development of Eco-environmental Photovoltaic Leisure Ship with Sail-controlling Device With Respect to Solar-Hybrid Generating System (풍력 Sail 돛 제어장치를 이용한 친환경 태양광 레져보트의 하이브리드 발전시스템 관련 성능평가에 대한 연구)

  • Oh, Kyoung Gun;Moon, Byung Young;Lee, Ki Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.57-67
    • /
    • 2016
  • As a new technical approach, an attempt was made to realize a photovoltaic system for an eco-environmental leisure ship by simultaneously actuating nine photovoltaic solar panels in association with the application of a sail-controlling system using wind energy. In this approach, the photovoltaic system consisted of a solar module, an inverter, a battery, and the relevant components, while the sail-controlling device was equipped with sail up/down and mast turning systems. The previously mentioned eco-environmental leisure ship utilizes a photovoltaic hybrid system that uses solar and wind energy as renewable energy sources. Furthermore, this research included a performance evaluation of the manufactured prototype, the acquisition of the purposed quantity values, and development of the purposed items. The significant items, including the sail up/down speed (seconds) and mast turning angle (degrees) were evaluated for a performance test. A wind direction sensitivity of 90% and maximum instant charging power of 900 W were also obtained in the process of the performance evaluation. In addition, the maximum sail time was also evaluated in order to acquire the optimum value. The performance evaluation showed that the prototype with a photovoltaic hybrid system was suitable for sailing an eco-environmental leisure ship using solar and wind energy.

Case Study on 12kW Building Integrated Photovoltaic System (12kW급 건물일체형 태양광발전시스템 사례분석)

  • Park, Kyung-Eun;Kang, Gi-Hwan;Kim, Hyun-Il;So, Jung-Hoon;Yu, Gwon-Jong;Kim, Jun-Tae;Lee, Kil-Song
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • We intend to describe a 12kW building-integrated photovoltaic system which was applied into the south wall of a new building. This study showed the results that were appeared from describing the PV module manufacture and installation process, and performing generation performance analysis of BIPV system. From the result we confirmed that the generation performance of the BIPV system was changed by season. The performance ratio(PR) was about 83.6% in winter and it means that performance of this BIPV system was so good in that season. On the other hand, the PR in summer was about 75.0% dropped about 8%. It was believed that the change was influenced by the reduction of solar radiation irradiated into the PV modules by installation position and rainy spell in summer. And we also confirmed that low irradiation condition is cause of the additional loss in the total PV system. In this case, the efficiency ratio of PCS drops significantly at low input loads and the average conversion efficiency of PCS in summer was 76.4% decreased about 10% from 86% in winter.