• Title/Summary/Keyword: a Photovoltaic System

Search Result 1,629, Processing Time 0.033 seconds

Analysis of Irradiation and Power per Each Months of Photovoltaic Systems (태양광 발전시스템의 월별 일사량과 전력량 분석)

  • Shin, Hyun-Mahn;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.40-42
    • /
    • 2009
  • The economic growth and highly industrialized society have increased the demand for electricity power. As a result, concerns were focused on the energy resource scarcity and global warming. That is why the photovoltaic generation system to address these concerns has been in the spotlight recently. In this thesis, a utility interactive photovoltaic generation system was operated experimentally for the purpose of promoting the spread of the photovoltaic generation system in the future. Also, the effect of the type of array structure has on the performance of the photovoltaic generation system was evaluated quantitatively and by analyzing the comprehensive operating characteristics, the following results were obtained. In the demo system operated for a year, the average irradiation was measured to be 455,076 $[W/m^2]$ and the maximum irradiation to be 626,622 $[W/m^2]$ in May, up 171,546 $[W/m^2]$ or 38[%] compared with the average irradiation. The minimum irradiation was observed to be 294,022$[W/m^2]$ in December, down 161,054 $[W/m^2]$ or 35[%] compared with the average irradiation. The generation power in situation where there is plenty of irradiation was more than the average one, and the generation power in the fixed system amounted to 32[%], the single-axis tracker to 37[%], and the dual-axis tracker to 39[%]. The generation power in situation where there is little irradiation was less than the average one, and the generation power in the dual-axis tracker amounted to 41[%], the single-axis tracker to 40[%], and the fixed system to 36[%].

  • PDF

Commercial Tool Based Modeling and Simulation Analysis of a Grid-Connected for 120kW Photovoltaic Generation System (상용툴을 이용한 120kW급 계통연계형 태양광발전시스템의 모델링 및 모의 해석)

  • Hwang, J.H.;Ahn, K.S.;Kim, Y.S.;Lim, H.C.;Oh, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.519-520
    • /
    • 2006
  • In this paper, to evaluate the grid-connected 120kW class Photovoltaic(PV) system performance, as a consisted of solar cells, PCS, 150kVA transformer station. The paper address modeling and analysis of a grid-connected 120kW class photovoltaic generation system(PV system) PSCAD/EMTD and Psim. A PWM voltage source inverter(VIS) and its current control scheme have been implemented. A P&O(Perturbation and Observation) MPPT algorithms technique modeling has been simulated and analysed.

  • PDF

Development of Leakage Current Reduction Method in 3-Level Photovoltaic PCS (3레벨 태양광 PCS에서의 누설전류 저감기법 개발)

  • Han, Seongeun;Jo, Jongmin;An, Hyunsung;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.56-61
    • /
    • 2019
  • In this study, a reduction method of leakage current in a three-level photovoltaic power-conditioning system (PCS) is proposed and verified by simulation and experiment. Leakage current generation is analyzed through an equivalent model of the common mode voltage considering a significant parasitic capacitance existing between the photovoltaic array and ground. A leakage current reduction method using pulse-width modulation (PWM) method is also proposed, and a 10-kW three-level photovoltaic PCS simulation and experiment is performed with a $1{\mu}F$ parasitic capacitor based on 100 nF/kW. The proposed method using the PWM method is verified to reduce the leakage current by 73% compared with the conventional PWM method.

Development of a System for Predicting Photovoltaic Power Generation and Detecting Defects Using Machine Learning (기계학습을 이용한 태양광 발전량 예측 및 결함 검출 시스템 개발)

  • Lee, Seungmin;Lee, Woo Jin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.10
    • /
    • pp.353-360
    • /
    • 2016
  • Recently, solar photovoltaic(PV) power generation which generates electrical power from solar panels composed of multiple solar cells, showed the most prominent growth in the renewable energy sector worldwide. However, in spite of increased demand and need for a photovoltaic power generation, it is difficult to early detect defects of solar panels and equipments due to wide and irregular distribution of power generation. In this paper, we choose an optimal machine learning algorithm for estimating the generation amount of solar power by considering several panel information and climate information and develop a defect detection system by using the chosen algorithm generation. Also we apply the algorithm to a domestic solar photovoltaic power plant as a case study.

Fault Prediction of Photovoltaic Monitoring System based on Power Generation Prediction Model (발전량 예측 모델 기반의 태양광 모니터링 시스템 고장 예측)

  • Hong, Jeseong;Park, Jihoon;Kim, Youngchul
    • Journal of Platform Technology
    • /
    • v.6 no.2
    • /
    • pp.19-25
    • /
    • 2018
  • Existing Photovoltaic(PV) monitoring system monitors the current, past power generation, all values of environmental sensors. It is necessary to predict solar power generation for efficient operation and maintenance on the power plant. We propose a method for estimating the generation of PV data based PV monitoring system with data accumulation. Through this, we intend to find the failure prediction of the photovoltaic power plant in proportion to the predicted power generation. As a result, the administrator can predict the failure of the system it will be prepared in advance.

The Design of Digital Controller for Boost Converter on Photovoltaic System (태양광용 부스트 컨버터의 디지털 제어기 설계)

  • Im, Ji-Hoon;Choi, Ju-Yeop;Song, Seung-Ho;Choy, Ick;Jeong, Seung-Hwan;An, Jin-Ung;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.6
    • /
    • pp.22-27
    • /
    • 2010
  • In photovoltaic system, the specifications of solar array is changed as open circuit voltage and short circuit current because of cell temperature and solar radiation. A boost converter of this system connects between output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio. Therefore to supply stable voltage to the grid, a boost converter is need to keep certain voltage output. Considering the capacitance and the resistance of boost converter, this paper designed proper digital controller.

An Economic Analysis and Consideration on the Application of Photovoltaic System for Bridge Nightscape Energy Savings at Han River in Seoul (서울시 한강교량의 태양광발전시스템 적용 시 경관조명 에너지 절약에 관한 경제성 분석 및 고찰)

  • Park, Yoon-Min;Hong, Seong-Kwan;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • PV(Photovoltaic) system is environmentally friendly power system using solar energy in renewable energy. PV system compared to other renewable energy power generation systems is relatively easy to install, so the dissemination is increasing worldwide. Especially, BIPV(Building Integrated Photovoltaic) is a system that PV modules are installed on the building and use renewable energy. But this system is difficult to apply due to the shadow of adjacent buildings and limited installation. In this study, payback period is calculated by Retscreen 2010, that is an economic assessment software of renewable energy, on applied to the bridge of PV system. As results, this study aims at actively considering the application.

A Study on the Eco-environmental Blind using BIPV Module Applications (BIPV Module을 적용한 친환경 전동 블라인드에 관한 연구)

  • Shin, Hyun-Woo;Yoon, Jong-Ho;Lee, Kil-Song;Kim, Byeong-Man;Jang, Jin-Ho;Kang, Gi-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.105-106
    • /
    • 2008
  • In korea, PV business has been growing fast since 2000. There are many ways to build PV System. Among them, BIPV(Building Integrated Photovoltaic) System using PV Modules as external wall has been carried out research on and invested much. Thus I will suggest another way to apply the BIPV System. This System is Eco System designed to consume little energy working the blind by the power that the BIPV System generates. I will show you how to make and apply this BIPV System.

  • PDF

Design Method and Development Status of Photovoltaic System (태양광발전시스템의 설계법과 개발동향)

  • Yu, Kwon-Jong;Song, Jin-Soo;Jung, Myong-Woong;Kang, Kee-Whan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1048-1051
    • /
    • 1992
  • The design method is a crucial factor for the successful operation of photovoltaic system. A design method is proposed and applied practically to a stand-alone system of 25KWp aimed at the power supply for a remote-island. In this paper the operation results of this system are discussed. In addition, the current status and future prospects at home and abroad on the development of photovoltaic systems are also described.

  • PDF

Design of Grid Connected Photovoltaic System with Stand-alone Operation (독립운전기능을 갖는 계통연계형 태양광 발전시스템의 설계)

  • Kim M.S.;Lee S.H.;Hong J.S.;Choi J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.969-972
    • /
    • 2003
  • This paper deal with a necessary factors for design grid connected photovoltaic system with stand-alone operation, and show simulation results of individual functions and multi- operation according to utility condition. Generally, photovoltaic system have only one operation of either stand-alone or line interactive, and have a isolation transformer for electrical isolation from utility therefore it is bulky, weighty, and a high price system as compared with usefulness. In this paper, A topology and algorithm adequate for lightweight, high efficiency, low price, multi function is selected and inquired into the validity using simulation of variable conditions.

  • PDF