• Title/Summary/Keyword: a Photovoltaic System

Search Result 1,631, Processing Time 0.032 seconds

High-temperature Adhesion Promoter Based on (3-Glycidoxypropyl) Trimethoxysilane for Cu Paste

  • Jiang, Jianwei;Koo, Yong Hwan;Kim, Hye Won;Park, Ji Hyun;Kang, Hyun Suk;Lee, Byung Cheol;Kim, Sang-Ho;Song, Hee-Eun;Piao, Longhai
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.3025-3029
    • /
    • 2014
  • To realize copper-based electrode materials for printed electronics applications, it is necessary to improve the adhesion strength between conductive lines and the substrate. Here, we report the preparation of Cu pastes using (3-glycidoxypropyl) trimethoxysilane (GPTMS) prepolymer as an adhesion promoter (AP). The Cu pastes were screen-printed on glass and polyimide (PI) substrates and sintered at high temperatures (> $250^{\circ}C$) under a formic acid/$N_2$ environment. According to the adhesion strengths and electrical conductivities of the sintered Cu films, the optimized Cu paste was composed of 1.0 wt % GPTMS prepolymer, 83.6 wt % Cu powder and 15.4 wt % vehicle. After sintering at $400^{\circ}C$ on a glass substrate and $275^{\circ}C$ on a PI substrate, the Cu films showed the sheet resistances of $10.0m{\Omega}/sq$. and $5.2m{\Omega}/sq$., respectively. Furthermore, the sintered Cu films exhibit excellent adhesion properties according to the results of the ASTM-D3359 standard test.

Analysis and Design of a Three-port Flyback Inverter using an Active Power Decoupling Method to Minimize Input Capacitance

  • Kim, Jun-Gu;Kim, Kyu-Dong;Noh, Yong-Su;Jung, Yong-Chae;Won, Chung-Yuen
    • Journal of Power Electronics
    • /
    • v.13 no.4
    • /
    • pp.558-568
    • /
    • 2013
  • In this paper, a new decoupling technique for a flyback inverter using an active power decoupling circuit with auxiliary winding and a novel switching pattern is proposed. The conventional passive power decoupling method is applied to control Maximum Power Point Tracking (MPPT) efficiently by attenuating double frequency power pulsation on the photovoltaic (PV) side. In this case, decoupling capacitor for a flyback inverter is essentially required large electrolytic capacitor of milli-farads. However using the electrolytic capacitor have problems of bulky size and short life-span. Because this electrolytic capacitor is strongly concerned with the life-span of an AC module system, an active power decoupling circuit to minimize input capacitance is needed. In the proposed topology, auxiliary winding defined as a Ripple port will partially cover difference between a PV power and an AC Power. Since input capacitor and auxiliary capacitor is reduced by Ripple port, it can be replaced by a film capacitor. To perform the operation of charging/discharging decoupling capacitor $C_x$, a novel switching sequence is also proposed. The proposed topology is verified by design analysis, simulation and experimental results.

Single Phase Grid Connected Voltage-ed Inverter Utilizing a Power Decoupling Function (전력 디커플링 기능을 가진 단상 계통연계 전압형 인버터)

  • Lee, Sang-Wook;Mun, Sang-Pil;Park, Han-Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.236-241
    • /
    • 2017
  • This paper presents a single-phase grid connected voltage-ed inverter with a power decoupling circuit. In the single-phase grid connected voltage-ed inverter, it is well known that a power pulsation with twice the grid frequency is contained in the input power. In a conventional voltage type inverter, electrolytic capacitors with large capacitance have been used in order to smooth the DC voltage. However, lifetime of those capacitors is shortened by the power pulsation with twice grid frequency. The authors have been studied a active power decoupling(APD) method that reduce the pulsating power on the input DC bus line, this enables to transfer the ripple energy appeared on the input DC capacitors into the energy in a small film capacitor on the additional circuit. Hence, extension of the lifetime of the inverter can be expected because the small film capacitor substitutes for the large electrolytic capacitors. Finally, simulation and experimental results are discussed.

Heat & Cool Injection Molded Fresnel Lens Solar Concentrators (가열-냉각 사출성형 방식을 적용한 집광형 프레넬렌즈)

  • Jeong, Byeong-Ho;Min, Wan-Ki;Lee, Kang-Yeon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.283-289
    • /
    • 2014
  • A Fresnel lens is an optical component which can be used as a cost-effective, lightweight alternative to conventional continuous surface optics. Fresnel lens solar concentrators continue to fulfill a market requirement as a system component in high volume cost effective Concentrating Photovoltaic (CPV) electricity generation. The basic principles of the fresnel lens are reviewed and some practical examples are described. To investigate the performance space of the Fresnel lens, a fast simulation method which is a hybrid between raytracing and analytical computation is employed to generate a cache of simulation data. Injection molders are warming up to the idea of cycling their tool surface temperature during the molding cycle rather than keeping it constant. Heat and cool process are now also finding that raising the mold wall temperature above the resin's glass-transition or crystalline melting temperature during the filling stage and product performance in applications from automotive to packaging to optics. This paper deals with the suitability of Fresnel lenses of imaging and non-imaging designs for solar energy concentration. The concentration fresnel lens confirmed machinability and optical transmittance and roughness measure through manufactured the prototype.

Soft Switching DC-DC Converter for AC Module Type PV Module Integrated Converter (AC 모듈형 태양광 모듈 집적형 컨버터를 위한 소프트 스위칭 DC-DC 컨버터)

  • Youn, Sun-Jae;Kim, Young-Ho;Jung, Yong-Chae;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.247-255
    • /
    • 2013
  • In this paper, a soft switching DC-DC converter for AC module type photovoltaic (PV) module integrated converter is proposed. A push-pull converter is suitable for a low voltage PV AC module system because the step-up ratio of a high frequency transformer is high and the number of primary side switches is relatively small. However, the conventional push-pull converters do not have high efficiency because of high switching losses by hard switching and transformer losses (copper and iron losses) by high turns-ratio of the transformer. In the proposed converter, primary side switches are turned on at zero voltage switching (ZCS) condition and turned off at zero current switching (ZVS) condition through parallel resonance between secondary leakage inductance of the transformer and a resonant capacitor. Therefore the proposed push-pull converter decreases the switching loss using soft switching of the primary switches. Also, the turns-ratio of the transformer can be reduced by half using a voltage-doubler of secondary side. The theoretical analysis of the proposed converter is verified by simulation and experimental results.

A Study on the Plasma Enhanced Hot-wire CVD Grown Miorocrystalline Silicon Films for Photovoltaic Device Applications (태양전지 응용을 위한 플라즈마 열선 화학기상증착법으로 성장한 미세결정 실리콘에 관한 연구)

  • 유진수;임동건;고재경;박중현;이준신
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.632-635
    • /
    • 2001
  • Microcrystalline Si films have been deposited by using five W-wire filaments of 0.5 mm diameter for hot-wire chemical vapor deposition (HWCVD). We compared the HWCVD grown films with the film exposed to transformer couple plasma system for the modification of seed layer. W-wire filament temperature was maintained below 1600$^{\circ}C$ to avoid metal contamination by thermal evaporation at the filament. Deposition conditions were varied with H$_2$dilution ratio, with and without plasma treatment. From the Raman spectra analysis, we observed that the film crystallization was strongly influenced by the H$_2$dilution ratio and weakly depended on the distance between the wire and a substrate. We were able to achieve the crystalline volume fraction of about 70% with an SiH$_4$/H$_2$ratio of 1.3%, a wire temperature of 1514$^{\circ}C$, a substrate separation distance of 4cm, and a chamber pressure of 38 mTorr. We investigated the influence of ${\mu}$c-Si film properties by using a plasma treatment. This article also deals with the influence of the H$_2$dilution ratio in crystallization modification.

  • PDF

A Study on the Optimal Planning for Dispersed Fuel Cell Generation Systems in Power Systems (전력계통에 있어서 분산형 연료전지 발전시스템의 최적 도입계획에 관한 연구)

  • Rho, Dae-Seok;Shim, Hun;Oh, Yong-Taek;Choi, Jae-Seok;Cha, Jun-Min
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.6
    • /
    • pp.265-274
    • /
    • 2001
  • Recently, the operation of power systems has become more difficult because the peak demand load is increasing continuously and the daily load factor is getting worse and worse. Also, the consideration of deregulation and global environment in electric power industry is required. In order to overcome those problems, a study on the planning and operation in power systems of dispersed generating sources such as fuel cell systems, photovoltaic systems and wind power systems, has been performed energetically. This paper presents a method for determining an optimal operation strategy of dispersed co-generating sources, especially fuel cell generation systems, considering thermal supply as well as electric power supply. In other words, the optimal operation of those sources can be determined easily by the principle of equal incremental fuel cost and the thermal merit of those sources can be also evaluated quantitatively through Kuhn-Tucker's optimal conditions. In additions, an priority method using the comparison of total cost at the peak load time interval is presented in order ot select the optimal locations of those sources. The validity of the proposed algorithms is demonstrated using a model system.

  • PDF

A Study on the Step-up DC-DC Converter for PV System Application Under Variable Input Voltage Condition (가변 입력 전압 조건하에서 태양광 시스템 적용을 위한 승압형 DC-DC 컨버터 연구)

  • Ju-Yeop Lee;Se-Cheon Oh;Il-Hyeong Jo;Ye-Jin Kim;Yun-Seok Ko
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.4
    • /
    • pp.677-684
    • /
    • 2024
  • In this paper, the design method of a step-up DC-DC converter based on PWM control was studied for solar power system application. The operating principle of the switching mode step-up type DC-DC converter was analyzed and the basic design method was studied. For photovoltaic system application, an output voltage feedback control algorithm based on PWM control was developed to enable the converter's output voltage to follow the target voltage under variable input conditions. As a procedure to verify the effectiveness of the proposed algorithm, a prototype of a step-up DC-DC converter with a single feedback output voltage was designed and made by boosting the input voltage DC 10V to DC 30V. In experiments with prototypes, it was confirmed that the output voltage of the oscilloscope and LCD accurately followed the target output voltage. In the performance evaluation test, it was confirmed that the output voltage of the oscilloscope and LCD accurately followed the target output voltage by showing an error rate within 1 [%] of the reference voltage.

Study on Current Collector for All Vanadium Redox Flow Battery (전바나듐계 레독스플로우전지용 집전체에 대한 연구)

  • Choi, Ho-Sang;Hwang, Gab-Jin;Kim, Jae-Chul;Ryu, Cheol-Hwi
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.2
    • /
    • pp.240-248
    • /
    • 2011
  • All-vanadium redox flow battery (VRFB) has been studied actively as one of the most promising electrochemical energy storage systems for a wide range of applications such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants at night time. Among consisting elements of the VRFB, the ion exchange membrane and the electrode play important roles. In this study, carbon PVC coposite sheets for the VRFB have been developed and electrochemical characteristics investigated. Current collector for VRFB, carbon PVC composite sheets (CPCS), were prepared with G-1028 as a conducting particle, PVC as a polymer, Dibutyl phthalate (DBP) as a plasticizer and fumed Silica (FS) as a dispersion agent. CPCS has been shown to have the characteristics as an excellent current collector for VRFB and electrochemical properties of specific resistivity 0.31 ${\Omega}cm$, which were composed of G-1028 80 wt%, PVC 10 wt%, DBP 5 wt% and FS 5 wt%.

Effect of structure configurations and wind characteristics on the design of solar concentrator support structure under dynamic wind action

  • Kaabia, Bassem;Langlois, Sebastien;Maheux, Sebastien
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.41-57
    • /
    • 2018
  • Concentrated Solar Photovoltaic (CPV) is a promising alternative to conventional solar structures. These solar tracking structures need to be optimized to be competitive against other types of energy production. In particular, the selection of the structural parameters needs to be optimized with regards to the dynamic wind response. This study aims to evaluate the effect of the main structural parameters, as selected in the preliminary design phase, on the wind response and then on the weight of the steel support structure. A parametric study has been performed where parameters influencing dynamic wind response are varied. The study is performed using a semi-deterministic time-domain wind analysis method. Unsteady aerodynamic model is applied for the shape of the CPV structure collector at different configurations in conjunction with a consistent mass-spring-damper model with the corresponding degrees of freedom to describe the dynamic response of the system. It is shown that, unlike the static response analysis, the variation of the peak wind response with many structural parameters is highly nonlinear because of the dynamic wind action. A steel structural optimization process reveals that close attention to structural and site wind parameters could lead to optimal design of CPV steel support structure.