• Title/Summary/Keyword: a Gabor image

Search Result 135, Processing Time 0.022 seconds

A Gabor Cosine and Sine Transform (Gabor 코사인과 사인 변환)

  • Lee, Juck-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.4
    • /
    • pp.408-417
    • /
    • 2002
  • Gabor cosine and sine functions have widely been used to describe the human visual filters. This paper presents a new method to locally represent image frequency components using these functions. The parameters of basis functions are determined based on dc ripple and the sidelobe strength of step response. The resultant transform consisting of Gabor cosine and sine functions is compared with existing transforms by computing the joint effective width and by applying to the image reconstruction with the limited number of transformed coefficients. The experimental results show that the proposed transform has better performance than DGT and DCT.

Image Retrieval using Rotation Invariant Gabor Filter (회전불변 Gabor 필터를 이용한 영상검색)

  • Kim, Dong-Hoon;Shin, Dae-Kyu;Kim, Hyun-Sool;Jung, Tae-Yun;Park, Sang-Hui
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.7
    • /
    • pp.323-326
    • /
    • 2002
  • As multimedia database and digital image libraries are enlarged, CBIR(Content Based Image Retrieval) has been getting importance for the efficient search. Generally, CBIR uses primitive features such as color, shape, texture and so on. Among various methods of CBIR, Gabor wavelet has good image retrieval performance with texture features but it has a disadvantage which does not perform well for a rotated image because of its direction oriented filter. In this paper, we propose a new method to solve this problem by modifying Gabor filter for all directions. And then we will compare the searching performance of the proposed method with those of conventional image retrieval methods through experiments with trademarks.

Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images

  • Bu, Hee-Hyung;Kim, Nam-Chul;Lee, Bae-Ho;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

Similarity Measurement using Gabor Energy Feature and Mutual Information for Image Registration

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2011
  • Image registration is an essential process to analyze the time series of satellite images for the purpose of image fusion and change detection. The Mutual Information (MI) is commonly used as similarity measure for image registration because of its robustness to noise. Due to the radiometric differences, it is not easy to apply MI to multi-temporal satellite images using directly the pixel intensity. Image features for MI are more abundantly obtained by employing a Gabor filter which varies adaptively with the filter characteristics such as filter size, frequency and orientation for each pixel. In this paper we employed Bidirectional Gabor Filter Energy (BGFE) defined by Gabor filter features and applied the BGFE to similarity measure calculation as an image feature for MI. The experiment results show that the proposed method is more robust than the conventional MI method combined with intensity or gradient magnitude.

Texture Feature-Based Language Identification Using Gabor Feature and Wavelet-Domain BDIP and BVLC Features (Gabor 특징과 웨이브렛 영역의 BDIP와 BVLC 특징을 이용한 질감 특징 기반 언어 인식)

  • Jang, Ick-Hoon;Lee, Woo-Shin;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.76-85
    • /
    • 2011
  • In this paper, we propose a texture feature-based language identification using Gabor feature and wavelet-domain BDIP (block difference of inverse probabilities) and BVLC (block variance of local correlation coefficients) features. In the proposed method, Gabor and wavelet transforms are first applied to a test image. The wavelet subbands are next denoised by Donoho's soft-thresholding. The magnitude operator is then applied to the Gabor image and the BDIP and BVLC operators to the wavelet subbands. Moments for Gabor magnitude image and each subband of BDIP and BVLC are computed and fused into a feature vector. In classification, the WPCA (whitened principal component analysis) classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the test feature vector. Experimental results show that the proposed method yields excellent language identification with rather low feature dimension for a document image DB.

Pedestrian Detection Algorithm using a Gabor Filter Bank (Gabor Filter Bank를 이용한 보행자 검출 알고리즘)

  • Lee, Sewon;Jang, Jin-Won;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.9
    • /
    • pp.930-935
    • /
    • 2014
  • A Gabor filter is a linear filter used for edge detectionas frequency and orientation representations of Gabor filters are similar to those of the human visual system. In this thesis, we propose a pedestrian detection algorithm using a Gabor filter bank. In order to extract the features of the pedestrian, we use various image processing algorithms and data structure algorithms. First, color image segmentation is performed to consider the information of the RGB color space. Second, histogram equalization is performed to enhance the brightness of the input images. Third, convolution is performed between a Gabor filter bank and the enhanced images. Fourth, statistical values are calculated by using the integral image (summed area table) method. The calculated statistical values are used for the feature matrix of the pedestrian area. To evaluate the proposed algorithm, the INRIA pedestrian database and SVM (Support Vector Machine) are used, and we compare the proposed algorithm and the HOG (Histogram of Oriented Gradient) pedestrian detector, presentlyreferred to as the methodology of pedestrian detection algorithm. The experimental results show that the proposed algorithm is more accurate compared to the HOG pedestrian detector.

Fingerprint Image Enhancement Algorithm Based on Gabor Filter Using Multiresolution Image Information (다중해상도 영상정보를 이용한 가보필터 기반 지문영상 개선)

  • Oh Sang-Keun;Park Yeung-Sub;Park Chul-Hyun;Kim Bum-Su;Won Jong-Un;Park Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1510-1517
    • /
    • 2004
  • A new fingerprint image enhancement algorithm using multiresolution information and Gabor filter is proposed in this paper. The proposed algorithm performs selection of the region in image according to inclusion of singular points and then performs enhancement using Gabor filtering of the region adjusted in its size. Gabor filter using representative direction in the same block is used in the region that the direction of ridge is not changed much, while Gabor filter using pixel based direction is used in the region that the direction of ridge is changed much. This method can reduce processing time for enhancement using Gabor filter and preserve the merit of Gabor filter.

Language Identification by Fusion of Gabor, MDLC, and Co-Occurrence Features (Gabor, MDLC, Co-Occurrence 특징의 융합에 의한 언어 인식)

  • Jang, Ick-Hoon;Kim, Ji-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.277-286
    • /
    • 2014
  • In this paper, we propose a texture feature-based language identification by fusion of Gabor, MDLC (multi-lag directional local correlation), and co-occurrence features. In the proposed method, for a test image, Gabor magnitude images are first obtained by Gabor transform followed by magnitude operator. Moments for the Gabor magniude images are then computed and vectorized. MDLC images are then obtained by MDLC operator and their moments are computed and vectorized. GLCM (gray-level co-occurrence matrix) is next calculated from the test image and co-occurrence features are computed using the GLCM, and the features are also vectorized. The three vectors of the Gabor, MDLC, and co-occurrence features are fused into a feature vector. In classification, the WPCA (whitened principal component analysis) classifier, which is usually adopted in the face identification, searches the training feature vector most similar to the test feature vector. We evaluate the performance of our method by examining averaged identification rates for a test document image DB obtained by scanning of documents with 15 languages. Experimental results show that the proposed method yields excellent language identification with rather low feature dimension for the test DB.

A Rotation Invariant Image Retrieval with Local Features

  • You, Hee-Jun;Shin, Dae-Kyu;Kim, Dong-Hoon;Kim, Hyun-Sool;Park, Sang-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.332-338
    • /
    • 2003
  • Content-based image retrieval is the research of images from database, that are visually similar to given image examples. Gabor functions and Gabor filters are regarded as excellent methods for feature extraction and texture segmentation. However, they have a disadvantage not to perform well in case of a rotated image because of its direction-oriented filter. This paper proposes a method of extracting local texture features from blocks with central interest points detected in an image and a rotation invariant Gabor wavelet filter. We also propose a method of comparing pattern histograms of features classified by VQ (Vector Quantization) among images.

Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets (FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원)

  • 신영숙;이수용;이일병;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • This paper reconstructs local region of a facial expression image from extracted feature points of facial expression image using FCM(Fuzzy C-Meang) clustering algorithm with Gabor wavelets. The feature extraction in a face is two steps. In the first step, we accomplish the edge extraction of main components of face using average value of 2-D Gabor wavelets coefficient histogram of image and in the next step, extract final feature points from the extracted edge information using FCM clustering algorithm. This study presents that the principal components of facial expression images can be reconstructed with only a few feature points extracted from FCM clustering algorithm. It can also be applied to objects recognition as well as facial expressions recognition.

  • PDF