• Title/Summary/Keyword: a DC servo motor

Search Result 259, Processing Time 0.022 seconds

A study on Development of Actuator for Biped Walking Robot (직립보행로봇 Actuator 개발에 관한 연구)

  • Moon, Jin-Soo;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.73-80
    • /
    • 2005
  • Biped robot requires that an energy source and a control part should be installed on the body to realize active system. So, we choose the DC motor having high torque in compact size in this study. In the DC motor serve system, we choose power amplifier with analog configuration, developed the module combined the controller and the driver. We applied this module to robot actuator and studied the response characteristics in an action and a return. Main controller with serve system, loading PIC micro controller, can be load on the robot with light weight.

A Study of the design of controller for microprocessor - Based Permanent magnet AC Servo motor (마이크로프로세서에 의한 SM 형 AC SERVO MOTOR 제어기의 설계에 관한 연구)

  • Kim, Ki-Young;Oh, Ki-Bong;Kim, Jung-Ha;Yoon, Byung-Do;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.258-263
    • /
    • 1989
  • The configuration of Brushless DC moter is similar to the permanent magnet Synchronous moter. Power transistors are oftenly used to supply the switching by feedback signals of rotor positioning sensors. Brushless DC moter have been used in Aerospace and Robotics where the electromagnetic noise or the sparking of the commutator contact can not be tolerated and long - lived maintenance - free operation is required. This paper describes the design of the microprocessor - based controller for the Brushless DC moter. The controller is designed to operate for the constant torque generation and variable speed control using sinusoidal PWM inverters and resolvers as rotor positioning sensors.

  • PDF

Implementation of a Lyapunov Function Based Fuzzy Controller for the Precise Positioning of DC Servo Motor

  • Lee, Joon-Tark;Lee, Oh-Keol;Shin, Song-Ho;Park, Doo-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.42-45
    • /
    • 1998
  • In this paper, a fuzzy control technique using adjustable scale factors and Lyapunov Function for the precise position control of DC servo system is introduced. The suitable scale factors were selected and the stable control input using the stability theory of Lyapunov function cam be applied. Therefore, the controlled system have the robustness against disturbances and can be stabilized because of reinforced adaptivity. This proposed fuzzy controller is implemented on a 80586 micro-computer which have of fuzzy inference routine part, manipulating part of scale factors and DT-2801 data aquisition board.

  • PDF

A Study on the Design of an Educational Robot System -On a Speed and Position Controller of DC Servo Motor- (교육용 로보트의 설계에 관한 연구 -DC써어보모타의 위치 및 속도제어기를 중심으로)

  • 고명삼;권욱현;이장규;이상욱;권순학
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.9
    • /
    • pp.327-339
    • /
    • 1984
  • In this paper we present how to design the software-based speed and position controller of a DC servo drive system for an educational robot. The controller designed by fully digital scheme consists of a CPU, drive unit, encoder pulse coding unit, speed and position detector. The control algirithm of the controller is a hybrid one such that speed control and position control are switched at some instant to get more accuracy. The experimental resusts of the proposed DC servo-controller show good performances for the position and speed control of the proposed educational robot system.

  • PDF

Design and Implementation of High Speed Pulse Motor Controller Chip (고속 펄스 모터 콘트롤러 칩의 설계 및 구현)

  • 김원호;이건오;원종백;박종식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.848-854
    • /
    • 1999
  • In this paper, we designed and implemented a precise pulse motor controller chip that generates the pulse needed to control step motor, DC servo and AC servo motors. This chip generates maximum pulse output rate of 5Mpps and has the quasi-S driving capability and speed and moving distance override capability during driving. We designed this chip with VHDL and executed a logic simulation and synthesis using Synopsys tool. The pre-layout simulation and post-layout simulation was executed by Compass tool. This chip was produced with 100 pins, PQFP package by 0.8${\mu}{\textrm}{m}$ gate array process and implemented by completely digital logic. We developed the test hardware board of performance and the CAMC(Computer Aided Motor Controller) Agent softwate to test the performance of the pulse motor controller chip produced. CAMC Agent enables user to set parameters needed to control motor with easy GUI(Graphic User Interface) environment and to display the output response of motor graphically.

  • PDF

Design and Implementation of integrated drive circuit for a small BLDG Motor (드라이브 내장형 소형 BLDC 모터의 설계와 구현)

  • Choi, J.H.;Lee, J.B.;Rhyu, S.H.;Chung, J.K.;Sung, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.170-172
    • /
    • 2003
  • Among low power servo applications, classical DC motors are very popular because they are reasonably cheap and easy to control. The main disadvantage is the mechanical collector which has only a limited life period. Also, brush sparking can destroy the rotor coil, generate EMC problems. So permanent magnet brushless do motors and drives are being used increasingly in a wide range of applications. This has been made possible with the advantages of high performance permanent magnets with high coercively and residual magnetic, which make it possible for the PM to have superior power density, torque to inertia ratio and efficiency, when compared to an induction or conventional dc machine. This paper presents the design of a PM brushless dc motor drive simplistically operates as a classical dc motor. The BLDC motor drive system for this paper composes to the power integrated circuits, the one chip device. And several simple semiconductors add to drive system for a motor drive system simplistically operates as a conventional dc motor. Test results confirmed the feasibility of the proposed motor drive system design.

  • PDF

Speed Control of a Sinusoidal Type Brushless DC Motor using an Auto-tuning Method (자동동조 기법을 이용한 정현파형 BLDC 전동기의 속도제어)

  • 전인효;노민식;최중경;박승엽
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.41-50
    • /
    • 1999
  • The brushless DC motor is widely being used in unmanned factories for its easy maintenance and characteristics of controllability. In this paper, we designed a speed control servo system of a sinusoidal type bmshless DC motor which has high efficiency and usefulness in the industrial fields. This servo system is realized by a controller which is required for driving motors and a new auto-tuning PI control algorithm. The DSP(Digita1 Signal Processor) is adopted as a main controller and a sensor signal processor owing to its fast computational capability and suitable architecture. Also, the hardware PWnl(Pulse Width Modulation) current controller is implemented to pursue a speed command exactly. By experimental results, it is verified that the speed response is pursued fast after command value and the steady-state response is well converged for command value variation without overshoots.

  • PDF

Design of Microprocessor Embedded 2-Axis Motor Control Chip (Microprocessor Embedded 2-Axis Motor Control Chip의 설계)

  • Roh, Kyu-Jin;Choi, Sung-Hyuk;Won, Jong-Baek;Kim, Jong-Eun;Park, Jong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.193-196
    • /
    • 2001
  • In this paper we designed CAMC-SP, the microprocessor embedded 2-axis motor control chip which controls a precise pulse motor by generating the pulse needed to control step motor, DC servo and AC servo motor. This design enables to decrease costs and to minimize a size. First we designed risc type 8-bit microprocessor compatible with PIC16C84, second we designed pulse motor controller. CAMC-SP is integrated of those two block. We designed CAMC-SP by VHDL and we testified to the Performance of it by performing functional simulation.

  • PDF

Position Control of D.C. Servo Motor Using Variable Structure Control with sliding mode (슬라이딩 모드를 이용한 DC Servo Motor 의 위치 제어)

  • Lee, Yoon-Jong;Lee, Il-Hyung;Son, Young-Dae;Oh, Won-Seok;Kim, Sin-Sup
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.571-575
    • /
    • 1989
  • A position control system of D.C. Servo motor based on discrete variable structure system with sliding mode is presented. The sliding mode has been designed for a continuous system, but it is often realized in digital fashion because the complex switching logic can be easily carried out. In digital control system, the ideal sliding mode does not occur since the structure can't be switched during sampling interval. However, there can be exist a motion which is confined to a regoin including the sliding surface and proceeds to the origin along the surface. This notion is called quasisliding mode. In this paper, we introduce this control scheme to the D.C. Servo motor position control in order to reduce the chattering phenonenon.

  • PDF

생산공장용 무궤도 무인운반차 개발

  • 한석균;김용일;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.286-290
    • /
    • 2001
  • This paper presents a full-digital low-level controller for a robotic material transfer system which has been developed for a computer-integrated manufacturing model plant. Compared to conventional analog or hybrid type controllers in current industrial environments, this controller system has some advantages such as strong noise-immunity, easy control algorithm implementation, etc The servo-controller consists of two modules, a position controller and a DC servo motor driver. The position controller operates position feedback routines by receiving position encoder data and sending control outputs to the driver. The position controller is implemented in a full-digital way using a recently introduced microcontroller. The DC servomotor driver controls speeds and torques. The driver consists of a micro-controller and insulated-gate-bipolar-transistors (IGBT). The micro-controller provides control signals, and the IGBT's amplifies the control signals and sends them to the motor.