• Title/Summary/Keyword: a - priori approach

Search Result 146, Processing Time 0.024 seconds

A Comparative Study Of Maximum Likelihood Method With Bayesian Approach In Statistical Parameter Estimation Of Static Systems (정적계통의 통계적 퍼래미터 추정에 있어 최우도법과 Bayes식방법과의 비교연구)

  • 한만춘;최경삼
    • 전기의세계
    • /
    • v.22 no.2
    • /
    • pp.51-56
    • /
    • 1973
  • The comparative study of maximum likelihood estimation with Bayesian approach was made by statistical & computational methods in center of a priori information of static systems and the effect of a priori information on the accuracy of the estimatiion was also analyzed. Through the numerical computations of some examples by digital computer, we concluded that maximum likelihood method is better than Bayesian estimation except for almost certain a priori informations. The study may therefore contribute in identification problems of dynamical systems connected with a priori informations.

  • PDF

Two-step a priori SNR Estimation in the Log-mel Domain Considering Phase Information (위상 정보를 고려한 로그멜 영역에서의 2단계 선험 SNR 추정)

  • Lee, Yun-Kyung;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.3 no.1
    • /
    • pp.87-94
    • /
    • 2011
  • The decision directed (DD) approach is widely used to determine a priori SNR from noisy speech signals. In conventional speech enhancement systems with a DD approach, a priori SNR is estimated by using only the magnitude components and consequently follows a posteriori SNR with one frame delay. We propose a phase-dependent two-step a priori SNR estimator based on the minimum mean square error (MMSE) in the log-mel spectral domain so that we can consider both magnitude and phase information, and it can overcome the performance degradation caused by one frame delay. From the experimental results, the proposed estimator is shown to improve the output SNR of enhanced speech signals by 2.3 dB compared to the conventional DD approach-based system.

  • PDF

An Adaptive Wind Noise Reduction Method Based on a priori SNR Estimation for Speech Eenhancement (음성 강화를 위한 a priori SNR 추정기반 적응 바람소리 저감 방법)

  • Seo, Ji-Hun;Lee, Seok-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1756-1760
    • /
    • 2015
  • This paper focuses on a priori signal to noise ratio (SNR) estimation method for the speech enhancement. There are many researches for speech enhancement with several ambient noise cancellation methods. The method based on spectral subtraction (SS) which is widely used in noise reduction has a trade-off between the performance and the distortion of the signals. So the need of adaptive method like an estimated a priori SNR being able to making a high performance and low distortion is increasing. The decision directed (DD) approach is used to determine a priori SNR in noisy speech signals. A priori SNR is estimated by using only the magnitude components and consequently follows a posteriori SNR with one frame delay. We propose a modified a priori SNR estimator and the weighted rational transfer function for speech enhancement with wind noises. The experimental result shows the performance of our proposed estimator is better Perceptual Evaluation of Speech Quality scores (PESQ, ITU-T P.862) compare to the conventional DD approach-based systems and different noise reduction methods.

Speech Enhancement Using Phase-Dependent A Priori SNR Estimator in Log-Mel Spectral Domain

  • Lee, Yun-Kyung;Park, Jeon Gue;Lee, Yun Keun;Kwon, Oh-Wook
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.721-729
    • /
    • 2014
  • We propose a novel phase-based method for single-channel speech enhancement to extract and enhance the desired signals in noisy environments by utilizing the phase information. In the method, a phase-dependent a priori signal-to-noise ratio (SNR) is estimated in the log-mel spectral domain to utilize both the magnitude and phase information of input speech signals. The phase-dependent estimator is incorporated into the conventional magnitude-based decision-directed approach that recursively computes the a priori SNR from noisy speech. Additionally, we reduce the performance degradation owing to the one-frame delay of the estimated phase-dependent a priori SNR by using a minimum mean square error (MMSE)-based and maximum a posteriori (MAP)-based estimator. In our speech enhancement experiments, the proposed phase-dependent a priori SNR estimator is shown to improve the output SNR by 2.6 dB for both the MMSE-based and MAP-based estimator cases as compared to a conventional magnitude-based estimator.

Visitor Segmentation as a Means of Reducing Variance in spending profiles Corps of Engineers Lakes (미국공병대(美國工兵隊) 관할 호수에 수반되는 여행비용의 분산 감소를 위한 시장분할법)

  • Lee, Ju Hee;Propst, Dennis B.
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.3
    • /
    • pp.203-213
    • /
    • 1992
  • The purpose of this study is to segment recreationists into groups which are homogeneous with respect to their spending patterns and trip characteristics. Date were derived from a larger study aimed at developing nationally representative expenditure profiles for recreation visitors to Corps of Engineers projects. Segmentation of these data reduces variance and helps to identify distinctive final demand vectors for input - output application. A - priori and cluster analysis approaches for identifying segments are compared. The a - priori segmentation approach identified 12 segments and the cluster analysis approach identified 3 segments. The 3 nonresident clusters - labeled "day use", "overnight", and "overnight camping" - show lower mean squares within groups than the a - priori segments on almost all nonresident spending categories with an exception of boating expenses. For the Corps of Engineers, implications of these findings for the estimation of economic impacts are discussed.

  • PDF

A Study on Adaptive Model Updating and a Priori Threshold Decision for Speaker Verification System (화자 확인 시스템을 위한 적응적 모델 갱신과 사전 문턱치 결정에 관한 연구)

  • 진세훈;이재희;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.20-26
    • /
    • 2000
  • In speaker verification system the HMM(hidden Markov model) parameter updating using small amount of data and the priori threshold decision are crucial factor for dealing with long-term variability in people voices. In the paper we present the speaker model updating technique which can be adaptable to the session-to-intra speaker variability and the priori threshold determining technique. The proposed technique decreases verification error rates which the session-to-session intra-speaker variability can bring by adapting new speech data to speaker model parameter through Baum Welch re-estimation. And in this study the proposed priori threshold determining technique is decided by a hybrid score measurement which combines the world model based technique and the cohen model based technique together. The results show that the proposed technique can lead a better performance and the difference of performance is small between the posteriori threshold decision based approach and the proposed priori threshold decision based approach.

  • PDF

A Novel Approach to a Robust A Priori SNR Estimator in Speech Enhancement (음성 향상에서 강인한 새로운 선행 SNR 추정 기법에 관한 연구)

  • Park, Yun-Sik;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.8
    • /
    • pp.383-388
    • /
    • 2006
  • This Paper presents a novel approach to single channel microphone speech enhancement in noisy environments. Widely used noise reduction techniques based on the spectral subtraction are generally expressed as a spectral gam depending on the signal-to-noise ratio (SNR). The well-known decision-directed(DD) estimator of Ephraim and Malah efficiently reduces musical noise under the background noise conditions, but generates the delay of the a prioiri SNR because the DD weights the speech spectrum component of the Previous frame in the speech signal. Therefore, the noise suppression gain which is affected by the delay of the a priori SNR, which is estimated by the DD matches the previous frame rather than the current one, so after noise suppression. this degrades the noise reduction performance during speech transient periods. We propose a computationally simple but effective speech enhancement technique based on the sigmoid type function for the weight Parameter of the DD. The proposed approach solves the delay problem about the main parameter, the a priori SNR of the DD while maintaining the benefits of the DD. Performances of the proposed enhancement algorithm are evaluated by ITU-T p.862 Perceptual Evaluation of Speech duality (PESQ). the Mean Opinion Score (MOS) and the speech spectrogram under various noise environments and yields better results compared with the fixed weight parameter of the DD.

A Study On Identification Of A Linear Discrete System When The Statistical Characteristics Of Observation Noise Are Unknown (측정잡음의 통계적 성질이 미지인 경우의 선형 이산치형계통의 동정에 관한 연구)

  • 하주식;박장춘
    • 전기의세계
    • /
    • v.22 no.4
    • /
    • pp.17-24
    • /
    • 1973
  • In the view point of practical engineering the identification problem may be considered as a problem to determine the optimal model in the sense of minimizing a given criterion function using the input-output records of the plant. In the system identification the statistical approach has been known to be very effective when the topological structure of the system and the statistical characteristics of the observation noises are known a priori. But in the practical situation there are many cases when the inforhation about the observation noises or the system noises are not available a priori. Here, the authors propose a new identification method which can be used effectively even in the cases when the variances of observation noises are unknown a priori. In the method, the identification of unknown parameters of a linear diserete system is achieved by minimizing the improved quadratic criterion function which is composed of the term of square equation errors and the term to eliminate the affection of observation noises. The method also gives the estimate of noise variance. Numerical computations for several examples show that the proposed procedure gives satisfactory results even when the short time observation data are provided.

  • PDF

Application of Bayesian Statistical Analysis to Multisource Data Integration

  • Hong, Sa-Hyun;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.394-399
    • /
    • 2002
  • In this paper, Multisource data classification methods based on Bayesian formula are considered. For this decision fusion scheme, the individual data sources are handled separately by statistical classification algorithms and then Bayesian fusion method is applied to integrate from the available data sources. This method includes the combination of each expert decisions where the weights of the individual experts represent the reliability of the sources. The reliability measure used in the statistical approach is common to all pixels in previous work. In this experiment, the weight factors have been assigned to have different value for all pixels in order to improve the integrated classification accuracies. Although most implementations of Bayesian classification approaches assume fixed a priori probabilities, we have used adaptive a priori probabilities by iteratively calculating the local a priori probabilities so as to maximize the posteriori probabilities. The effectiveness of the proposed method is at first demonstrated on simulations with artificial and evaluated in terms of real-world data sets. As a result, we have shown that Bayesian statistical fusion scheme performs well on multispectral data classification.

  • PDF

ComputationalAalgorithm for the MINQUE and its Dispersion Matrix

  • Huh, Moon Y.
    • Journal of the Korean Statistical Society
    • /
    • v.10
    • /
    • pp.91-96
    • /
    • 1981
  • The development of Minimum Norm Quadratic Unbiased Estimation (MINQUE) has introduced a unified approach for the estimation of variance components in general linear models. The computational problem has been studied by Liu and Senturia (1977) and Goodnight (1978, setting a-priori values to 0). This paper further simplifies the computation and gives efficient and compact computational algorithm for the MINQUE and dispersion matrix in general linear random model.

  • PDF