• Title/Summary/Keyword: Zwicker 파라미터

Search Result 8, Processing Time 0.023 seconds

Sound Quality Analysis of Water Turbing Generator Noise using Zwicker Parameter (Zwicker 파라미터를 이용한 수차발전기 소음의 음질분석)

  • Kook, Joung-Hun;Yun, Jae-Hyun;Kim, Jae-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.273-277
    • /
    • 2007
  • In case of the Hydraulic Turbine Dynamo operating for Waterpower Generation, it makes very huge and loud noises, and it influences bad effect physically as same as mentally to those people who are working inside of power plant, and brings the decline of an effective working efficiency. However, its evaluation method or measure about such noise reflects merely its physical attribute which is sensuous Loudness of the Noise itself, since the accumulation effect of Noise or the meaning connected with psychological response did not reflect, it is the actual state that a rational evaluation is unable to expect. Consequently, this Study has attempted to evaluate the Noise of Hydraulic Turbine Dynamo by analyzing the sound quality using Zwicker‘s Psychological Acoustic Parameter, after classification by its positions of the Noise occurring at Hydraulic Turbine Dynamo.

  • PDF

Objectively Quantified Consonance of Complex Sounds (객관적으로 정량화된 복합 신호음의 조화도)

  • Chon, Sang-Bae;Choi, In-Yong;Lee, Min-Gu;Sung, Koeng-Mo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.7
    • /
    • pp.323-327
    • /
    • 2007
  • In this paper, objectively quantified consonance of complex sound is proposed as a new psychoacoustical parameter. Proposing algorithm quantifies consonance of complex sound after applying psycho acoustical models which are parts of human perception such as masking effect, equal loudness contour, and critical band. To verify proposing algorithm, experiments with 10 car horn signals which have different complex sound were performed. The experiments show cross correlation of 0.95 between objectively quantified consonance by proposing algorithm and subjectively assessed consonance by listening tests. Considering the fact that there are few psychoacoustical parameter except Zwicker parameter, proposing algorithm will help to quantify psychoacoustical effect of complex sounds objectively.

Sound Quality Evaluation and Development of Sound Quality Index for High-Speed Train Interior (고속철도의 실내 음질평가와 음질인덱스 개발)

  • Park, Buhm;Choi, Sung-Hoon;Park, Jun-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.827-827
    • /
    • 2009
  • Complaints against high-speed train interior noise have been increasing as a number of high-speed train passenger grows bigger. It is very difficult to analyze characteristics of high-speed train interior noise using sound pressure level only. It is requested to consider how the public response change for each high-speed train interior noise. This study presents evaluation of the sound quality for interior noise of KTX-II using Zwicker parameters. Characteristic of loudness and sharpness is different between noise samples depending on operation condition. The noise sample that recorded when the high-speed train passed through tunnel section is more louder and sharper.

  • PDF

A Study on Perceptual Evaluation of Noise Sources in Living Environment (생활소음의 감성적 평가에 관한 연구)

  • 전진용;구민우;조문재
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.443-448
    • /
    • 2001
  • The subjective unwantedness felt from the noise sources in living environment has been evaluated by investigating the limit of perceptual loudness of the noise. The noise limits were selected by the subjects. And the noises were analyzed to find out whether there is any correlation with Zwicker parameters and ACF/IACF factors. It seemed that the loudness of noise from vacuum cleaner does not affect its perceives noisiness. Traffic noise also seems to be less influential in annoyance rating. It was resealed that floor impact noise generated by bang machine is the most irritating noise that can be heard in residential buildings.

  • PDF

Sound Sensation and Its Related Objective Parameters of Nylon Fabrics for Sports Outerwear (스포츠 아우터웨어용 나일론 직물의 소리 감각과 이와 관련된 객관적 파라미터들)

  • Yi, Eunjou;Cho, Gilsoo
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.9
    • /
    • pp.1593-1602
    • /
    • 2001
  • 본 연구는 스포츠 아우터웨어용 나일론 직물의 소리에 대한 주관적 감각과 이에 관련된 객관적 측정치를 규명하기 위하여, 서로 다른 8종의 나일론 직물의 소리의 스펙트럼 파형을 고찰하였으며, 소리 파라미터로 총음압(level pressure of total sound, LPT),세 가지 AR (autoregressive)계수, Zwicker의 심리음향학적 모델에 따른 크기(Z)와 날카로움(Z)를 계산하였고, Kawabata Evaluation System(KES)으로 직물의 물리적 성질을 측정하였다. 주관적 감각 평가를 위하여 피험자에게 녹음된 각 직물소리를 들려주어 7개 소리 감각 (부드러움, 시끄러움, 날카로움, 맑음, 거 침, 높음, 유쾌함)을 의미분별척도로 답하게 한 후, 단계적 선형 회귀식을 이용하여 직물 소리의 주관적 감각에 대한 예측 모델을 제시하였다. 울트라스웨이드를 제외한 태피터 나일론 직물들은 스펙트럼 파형 에서 다른 조성 섬유의 직물들보다 음압 값이 높고, 총음압이 60dB 안팎의 값을 보여, 착용자에게 불쾌감을 줄 것으로 예상되었으며, 주관적 감각 평가에서도 소리의 부드러움과 맑음, 유쾌함에서 음의 점수를, 시끄러움과 날카로움, 거침, 높음에서 양의 점수를 얻었다. 주관적 감각의 예측모델에서 총음압은 시끄러움과 거침에 정적 영향을, 유쾌함에 부적 영향을 미쳐서 나일론 직물 소리의 총음압이 50dB 이하일 때 주관적으로 유쾌하게 느껴지는 것으로 나타났다.

  • PDF

Perceptual Evaluation of Noise Sources in a Chamber for Residential and Working Environment (주거 및 사무환경 챔버에서의 생활소음에 대한 감성적 평가)

  • Jeon, Jin-Yong;Kim, Kyong-Ho;Jung, Jeong-Ho;Ryu, Jong-Kwan;Cho, Moon-Jae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.6
    • /
    • pp.437-444
    • /
    • 2002
  • This paper is to provide the basic way of a acoustical evaluation and efficient control noise by investigating the limits of perceptual loudness of living environment and by finding out any correlation between Physical characteristics of noise and psychoacoustic parameters. The limits of perceptual loudness were selected by the subjects in a chamber for residential and working environment. And the noise sources were analyzed to find out whether there is any correlation with Zwicker parameters and ACF factors. In this study especially, to set up the domestic evaluation grade about floor impact noise. we'd like to suggest the loudness Perception research result as fundamental resource for setting up the evaluation grade through the result that is based on annoyance. In the result of this research, upper limit of heavy-weight impact noise was L-60, and lower limit of it was L-50. On the other hand, upper limit of light-weight impact noise was L-70, and lower limit of it was L-55. It seemed that the loudness of noise from vacuum cleaner noise does not affect its perceived noisiness. Noises implicated In human such as floor walking noise and talking sound, are the most irritating noise in office environment.

Sound Characteristics and Mechanical Properties of Taekwondo Uniform Fabrics (태권도 도복 직물의 소리 특성과 역학적 성질)

  • Jin, Eun-Jung;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.3
    • /
    • pp.486-491
    • /
    • 2012
  • This study examined the sound characteristics of Taekwondo uniform fabrics to investigate the relationship between the sound parameters and the mechanical properties of the fabric as well as to provide the conditions to maximize the frictional sound of the uniform. Frictional sounds of 6 fabrics for Taekwondo uniforms were generated by the Simulator for Frictional Sound of Fabrics. The frictional speeds were controlled at low(0.62 m/s), at mid(1.21 m/s) and at high(2.25 m/s) speed, respectively. The frictional sounds were recorded using a Data Recorder and Sound Quality System subsequently, the physical sound properties such as SPL(Sound Pressure Level) and Zwicker's psychoacoustic parameters were calculated. Mechanical properties of specimens were measured by KES-FB. The SPL, Loudness(Z) values increased while Sharpness(Z) value decreased. In the physical sound parameter, specimen E had the highest SPL value at low speed and specimen B at high speed. In case of Zwicker's psychoacoustic parameters, the commercially available Taekwondo uniform fabrics(E, F) showed higher values of Loudness(Z), Sharpness(Z), and Roughness(Z), that indicates they can produce louder, shaper and rougher sounds than other fabrics for Taekwondo uniforms. The decisive factors that affected frictional sounds for Taekwondo uniforms were W(weight) as well as EM(elongation at maximum load) at low speed and WC(compressional energy) at high speed.

Effect of Fabric Sound of Vapor Permeable Water Repellent Fabrics for Sportswear on Psychoacoustic Properties (스포츠웨어용 투습발수직물 소리가 심리음향학적 특성에 미치는 영향)

  • Lee, Jee-Hyun;Lee, Kyu-Lin;Jin, Eun-Jung;Yang, Yoon-Jung;Cho, Gil-Soo
    • Science of Emotion and Sensibility
    • /
    • v.15 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • The objectives of this study were to investigate the psychoacoustic properties of PTFE(Poly tetra Fluoroethylene) laminated vapor permeable water repellent fabrics which are frequently used for sportswear, to examine the relationship among fabrics' basic characteristics, mechanical properties and the psychoacoustic properties, and finally to propose the predicting model to minimize the psychoacoustic fabric sound. A total of 8 specimens' frictional sound were recorded and Zwicker's psychoacoustic parameters such as loudness(Z), sharpness(Z), roughness(Z), and fluctuation strength(Z) were calculated using the Sound Quality Program. Mechanical properties of specimens were measured by KES-FB system. Loudness(Z) of specimen D-1 was the highest, which means the rustling sound of the specimen D-1 was the most noisy. Statistically significant difference among film type was observed only in loudness(Z) for fabric sound. Based on ANOVA and post-hoc test, specimens were classified into less loud PTFE film group (groupI) and loud PTFE film group (groupII). Loudness(Z) was higher when staple yarn was used compared when filament yarn was used. According to the correlation between the mechanical properties of fabrics and loudness(Z) in groupI, the shear properties, compression properties and weight showed positive correlation with loudness(Z). According to the regression equation predicting loudness(Z) of groupI, the layer variable was chosen. In groupII, variables explaining the loudness(Z) were yarn types and shear hysteresis(2HG5).

  • PDF