• 제목/요약/키워드: ZrO_2$

검색결과 2,317건 처리시간 0.033초

Improvement of Impact Properties for $Nb/MoSi_2$ Laminate Composites by the Interfacial Modification (II)

  • Lee, Sang-Pill;Yoon, Han-Ki
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.830-835
    • /
    • 2000
  • The thermodynamical estimation of the interfacial reaction and the impact properties of $Nb/MoSi_2$ laminate composites containing SiC, $NbSi_2$ or $ZrO_2$ particles are investigated. Laminate composites, which comprise alternating layers of $MoSi_2$ with the particle and Nb foil, were fabricated by the hot press process. It is clearly found out that the interfacial reaction of $Nb/MoSi_2$ can be controlled by the addition of $ZrO_2$ particle to the $MoSi_2$ phase. The addition of $ZrO_2$ particle increases both the impact value and the sintered density of Nb/McSij, The suppression of the interfacial reaction is caused by the formation of $ZrSiO_2$ in $MoSi_2-ZrO_2$ matrix mixture.

  • PDF

A Study on Synthesis of $Ba_2Ti_9O_{20}$ by Coprecipitation Process and the Effect of $ZrO_2$ Addition (공침법에 의한 $Ba_2Ti_9O_{20}$ 합성과 $ZrO_2$ 첨가효과에 관한 연구)

  • 이병하;이경희;이헌식;전성용
    • Journal of the Korean Ceramic Society
    • /
    • 제30권12호
    • /
    • pp.1023-1028
    • /
    • 1993
  • To obtain a single phase of Ba2Ti9O20 at lower temperature than previious other researches. We investigated the effect of Zr substitution for predetermined portions of Ti in Ba2Ti9O20. In this study, the four compounds(x=0, 0.028, 0.048, 0.068) of Ba2(Ti1-xZrx)9O20 were prepared by coprecipitation reaction of BaCl2, TiCl4 and ZrOCl2 with (NH4)2CO3 and NH4OH as the coprecipitating agents and pH regulators, in queous solution. Owing to 4.8 mol% addition, the single phase of Ba2Ti9O20 showing high Q was obtained at 115$0^{\circ}C$ which is lower by 25$0^{\circ}C$ than the temperature in case of mechanical mixtures of BaCO3 and TiO2.

  • PDF

Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young;Ko, Tae-Hun;Lee, Jung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제57권11호
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

Effect of In Situ YAG on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 In Situ YAG의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • 제55권11호
    • /
    • pp.505-513
    • /
    • 2006
  • The present study investigated the influence of the content of $Al_2O_3+Y_2O_3$ sintering additives on the microstructure, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites. Phase analysis of composites by XRD revealed mostly of ${\alpha}-SiC(4H),\;ZrB_2,\;{\beta}-SiC(15R)$ and In Situ $YAG(Al_5Y_3O_{12})$. The relative density and the flexural strength showed the highest value of 86.8[%] and 203[Mpa] for $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 3.7 and $3.6[MPa{\cdot}m^{1/2}]\;for\;SiC-ZrB_2$ composites with an addition of 8 and 12[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature respectively. Abnormal grain growth takes place during phase transformation from ${\beta}-SiC\;into\;{\alpha}-SiC$ was correlated with In Situ YAG phase by reaction between $Al_2O_3\;and\;Y_2O_3$ additives during sintering. The electrical resistivity showed the lowest value of $6.5{\times}10^{-3}[({\Omega}{\cdot}cm]$ for the $SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid at room temperature. The electrical resistivity of the $SiC-ZrB_2$ composites was all positive temperature coefficient(PTCR) in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The resistance temperature coefficient showed the highest value of $3.53{\times}10^{-3}/[^{\circ}C]\;for\;SiC-ZrB_2$ composite with an addition of 8[wt%] $Al_2O_3+Y_2O_3$ as a sintering aid in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. In this paper, it is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

An important factor for the water gas shift reaction activity of Cu-loaded cubic Ce0.8Zr0.2O2 catalysts

  • Jang, Won-Jun;Roh, Hyun-Seog;Jeong, Dae-Woon
    • Environmental Engineering Research
    • /
    • 제23권3호
    • /
    • pp.339-344
    • /
    • 2018
  • The Cu loading of a cubic $Ce_{0.8}Zr_{0.2}O_2$-supported Cu catalyst was optimized for a single-stage water gas shift (WGS) reaction. The catalyst was prepared by a co-precipitation method, and the WGS reaction was performed at a gas hourly space velocity of $150,494h^{-1}$. The results revealed that an 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst exhibits excellent catalytic performance and 100% $CO_2$ selectivity ($X_{CO}=27%$ at $240^{\circ}C$ for 100 h). The high activity of 80 wt% $Cu-Ce_{0.8}Zr_{0.2}O_2$ catalyst is attributed to the presence of abundant surface Cu atoms and the low activation energy of the resultant process.

Fabrication and Machinability of Mullite-ZrO2-Al2TiO5 Ceramics

  • Shin, Young Been;Lee, Won Jae;Kim, Il Soo
    • Journal of the Korean Ceramic Society
    • /
    • 제52권6호
    • /
    • pp.423-428
    • /
    • 2015
  • The machinability of materials is an important factor in engineering applications. Many ceramic components that have complex shapes require machining, typically using diamond tools, which leads to high production cost. Machinable ceramics containing h-BN have recently been developed, but these materials are very expensive because of high cost of raw materials and machining. Therefore the development of low-cost machinable ceramics is desirable. In this study, mullite-$ZrO_2$ ceramics were prepared additions of $Al_2TiO_5$. $ZrSiO_4$, $Al_2O_3$, and $Al_2TiO_5$ powders mixed at various molar ratios with sintering at 1400, 1500, and $1600^{\circ}C$ for 1 hr. Phase formation and microstructure of the sintered ceramics were observed by XRD and SEM, respectively. The machinability of each specimen was tested using the micro-hole machining method. The machinability results show that the ceramics sintered at temperatures over $1500^{\circ}C$ can be used as good low-cost machinable mullite-$ZrO_2-Al_2TiO_5$ ceramics.

GROWTH AND ELECTRICAL PROPERTIES OF (La,Sr)CoO$_3$/Pb(Zr,Ti)O$_3$/(La,Sr)CoO$_3$ HETEROSTRUCTURES FOR FIELD EFFECT TRANSISTOR

  • Lee, J.;Kim, S.W.
    • Journal of the Korean institute of surface engineering
    • /
    • 제29권6호
    • /
    • pp.839-846
    • /
    • 1996
  • Epitaxial (La, Sr)$CoO_3/Pb(Zr,\;Ti)O_3/(La,\;Sr)CoO_3$by pulsed laser deposition for ferroelectric field effect transistor. Epitaxial $LaCoO_3/Pb(Zr,\;Ti)O_3/(La,\;Sr)CoO_3$ heterostructures exhibited 70$\mu C/cm^2$ and 17 $\mu C/cm^2$at a positively and negatively poled states, respectively. On the other hand, epitaxial (La, Sr)$CoO_3/Pb(Zr,\;Ti)O_3/LaCoO_3$heterostructures show the remnant polarization states opposite to the $LaCoO_3/Pb(Zr,\;Ti)O_3/(La,\;Sr)CoO_3$ heterostructures. This indicates that the interface between (La, Sr)$CoO_3$ (LSCO) and $Pb(Zr, Ti)O_3(PZT)$ layers affects the asymmetric polarization remanence through electrochemical nature. The resistivity of $LaCoO_3$ (LCO) layer was found to be dependent on an ambient oxygen, primarily the ambient oxygen pressure during deposition. The resistivity of the LCO layer varied in the range of 0.1-100 $\Omega$cm. It is suggested that, with an appropriate resistivity of the LCO layer, the LCO/PZT/LSCO heterostructure can be used as the ferroelectric field effect transistor.

  • PDF

Synthesis of CaZrO3 : Eu3+ phosphor by skull melting method (스컬용융법에 의한 CaZrO3 : Eu3+ 형광체 합성)

  • Choi, Hyunmin;Kim, Youngchool;Seok, Jeongwon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • 제30권4호
    • /
    • pp.131-135
    • /
    • 2020
  • Single crystal phased CaZrO3 : Eu3+ phosphor have been synthesized by skull melting method. The crystal structure, morphology and optical properties of synthesized phosphor were investigated XRD (X-ray diffraction), SEM (scanning electron microscopy), UV (ultraviolet) fluorescence reaction and PL (photo luminescence). The starting materials having chemical composition of CaO: ZrO2 : Eu2O3= 0.962 : 1.013 : 0.025 mol% were charged into a cold crucible. The cold crucible was 120 mm in inner diameter and 150 mm in inner height, and 3 kg of mixed powder (CaO, ZrO2 and Eu2O3) was completely melted within 1 hour at an oscillation frequency of 3.4 MHz, maintained in the molten state for 2 hours, and finally air-cooled. The XRD results show that synthesized phosphor is stabilized in orthorhombic perovskite structure without any impurity phases. The synthesized phosphor could be excited by UV light (254 or 365 nm) and the emission spectra results indicated that bright red luminescence of CaZrO3 : Eu3+ due to magnetic dipole transition 5D07F2 at 615 nm was dominant.

Piezoelectric Characteristics of Low-temperature Sintered PSN-PZT Ceramics as a Function of Zr/Ti Ratio (저온소결한 PSN-PZT 세라믹스의 Zr/Ti 비에 따른 압전특성)

  • 류주현;우원희;오동언;정영호;정광현;류성림
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제16권12S호
    • /
    • pp.1195-1199
    • /
    • 2003
  • In this study, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, dielectric and piezoelectric properties of PSN-PZT[0.91Pb(Sb$\sub$1/2/Nb$\sub$1/2/)$\sub$0.03/(Zr$\sub$0.495/Ti$\sub$0.505/)$\sub$0.97/O$_3$-0.04Pb(Ni$\sub$1/2/W$\sub$1/2/)O$_3$+0.05BiFeO$_3$+0.3wt%MnO$_2$+0.6wt%CuO〕 ceramics were investigated according to Zr/Ti ratio. As Zr/Ti ratio is increased, electromechanical coupling factor(k$\sub$p/) and dielectric constant increased and then decreased after the ratio of Zr/Ti=50/50. Also, mechanical qualify factor(Q$\sub$m/) decreased and then increased after the ratio of Zr/Ti=50/50.

Hydrodesulfurization of Thiophene over $Ni-W/TiO_2-ZrO_2$ catalysts ($Ni-W/TiO_2-ZrO_2$ 촉매상에서 Thiophene의 수첨탈황반응)

  • 전광승;김문찬;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제8권1호
    • /
    • pp.84-91
    • /
    • 1992
  • Hydrodesulfurization of thiophene was studied over $Ni-W/TiO_2-ZrO_2$ catalysts in a fixed bed flow reactor. The ranges of experimental conditions were at the temperatures between 200$^\circ$C and 360$^\circ$C, the pressures between 20 X $10^5$ Pa. The catalysts were reduced with the flow of 10 L/hr of $H_2$ at the temperature of 350$^\circ$C. It was found that $TiO_2-ZrO_2$ supported catalysts had similar activity to $\gamma-Al_2O_3$ supported. The largest surface areas and the highest acidity occured as the binary oxides were mixed with equal molar ratios. The HDS increased with increasing temperatures, pressures and contact times.

  • PDF