• Title/Summary/Keyword: ZrO_2$

Search Result 2,317, Processing Time 0.061 seconds

Microwave Dielectric Properties of (Zr, Sn)$TiO_4$ ceramics according to Sn and Additives ((Zr, Sn)$TiO_4$ 세라믹스의 Sn 및 첨가제 양에 따른 고주파 유전 특성)

  • Yun, Jung-Rag;Kim, Kyung-Yong
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.181-184
    • /
    • 1993
  • Microwave characteristics of the system (Zr, Sn)$TiO_4$, ceramics within composition range X between 0.2 and 0.35 were investigated at 8GHz. For the improvement properties of (Zr, Sn)$TiO_4$, system, $Ta_2O_5$ and $WO_3$ addition in the range of 0.5 to 2.0wt% were investigated.

  • PDF

Effects of Alkaline Additives on CO2 Removal by Li2ZrO3 (Li2ZrO3로 CO2 제거시 알칼리 첨가제 효과)

  • Park, Joo-Won;Kang, Dong-Hwan;Jo, Young-Do;Yoo, Kyung-Seun;Lee, Jae-Goo;Kim, Jae-Ho;Han, Choon
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.535-539
    • /
    • 2006
  • Effects of alkaline additives on the $CO_2$ removal reaction have been investigated by a thermogravimetric analyzer. $Li_2ZrO_3$ was synthesized by soild reaction of $ZrO_2$ with $Li_2CO_3$ and then alkali chemicals were added to the synthesized $Li_2ZrO_3$ and then heat treatment was carried out. Addition of alkali chemicals enhanced the reactivity of $Li_2ZrO_3$ with the following order; $K_2CO_3>NaCl>LiCl>Na_2CO_3$, which were resulted from the formation of partially melted $Li_2CO_3$. SEM photographs showed the presence of melted state and the XRD results showed that the chemical states of added salts were not changed. Addition of NaCl caused the induction time of about 60 min at the initial reaction stage and the addition of $Na_2CO_3$ inhibited the decomposition of $Li_2CO_3$ at about $700{\sim}750^{\circ}C$.

Fabrication and Electrical Characteristics of SrZr$_{0.95}$M$_{0.05}$O$_3$-$\delta$ and BaZr$_{0.95}$O$_3$-$\delta$(M=Ga, Y) (SrZr$_{0.95}$M$_{0.05}$O$_3$-$\delta$ 및 BaZr$_{0.95}$O$_3$-$\delta$(M=Ga, Y) 의 제조와 전기적 특성)

  • 편영미;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.7
    • /
    • pp.679-684
    • /
    • 1999
  • Specimens of SrZr0.95Ga0.05O3-$\delta$, SrZr0.95Y0.05O3-$\delta$, BaZr0.95Ga0.05O3-$\delta$ and BaZr0.95Y0.05O3-$\delta$ were fabricated by a solid-state reaction method and subsequent sintering at 150$0^{\circ}C$ to 1$600^{\circ}C$ The microstructures and electrical characteristics of the specimens were studied. Only BaZr0.95Ga0.05O3-$\delta$ showed dense microstructure and had typical impedance spectra at various temperature. Its electrical conductivity by impedance analysis was 2.7$\times$10-3$\Omega$-1.cm-1 at 90$0^{\circ}C$ in air. The BaZr0.95Ga0.05O3-$\delta$ exhibited lower grain rsistance in wet atmosphere than in dry atmosphere and the reduction of resistance is due to the proton conduction.

  • PDF

The Effect of La2O3 Loading on the Performance of Ni-La2O3-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane (수증기 개질 반응에서 Ni-La2O3-Ce0.8Zr0.2O2 촉매의 La2O3 함량이 촉매의 성능에 미치는 영향)

  • YOO, SEONG-YEUN;KIM, HAK-MIN;KIM, BEOM-JUN;JANG, WON-JUN;ROH, HYUN-SEOG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.5
    • /
    • pp.419-426
    • /
    • 2018
  • $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts with various $La_2O_3$ loading were investigated for hydrogen production from steam reforming of methane (SRM). The $La_2O_3$ loading influenced the physicochemical properties of $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts such as BET surface area, Ni dispersion, Ni size and reducibility. Among the prepared catalysts, $Ni-70La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalyst showed the highest activity and stability at a very high gas hourly space velocity (GHSV) of $932,556h^{-1}$. This is mainly due to high Ni dispersion, small Ni size and high reducibility.

Ionio conductivity of solid solution ceramics in the system of $CaO-Y_{2}O_{3}-ZrO_{2}$ Prepared by SHS

  • Soh, Deawha;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.211-214
    • /
    • 2001
  • The undesirable phase transformation of zirconium dioxide at high temperatures can be eliminated by stabilization of the cubic phase with an addition of a selected alkaline earth or rare-earth oxide. In this paper the ionic conductivity of cubic solid solutions in the stabilized ZrO$_2$ by CaO-Y$_2$O$_3$ system was examined. The higher ionic conductivity appears to be related to lower activation energy rather than to the number of oxygen vacancies dictated by composition. Those compositions of highest conductivity lie close to the cubic-monoclinic solid-solution phase boundary. Conductivity temperature data are presented that indicate a reversible order-disorder transition for Zr$_2$2-Y$_2$O$_3$cubic solid solutions containing 20 and 25 mole % $Y_2$O$_3$.

  • PDF

Hydrothermal Synthesis and Structural Characterization of x mol% Calcia-Stabilized ZrO2 Nanopowders (x mol% 칼시아-안정화 지르코니아 나노분말의 수열합성 및 구조적 특성평가)

  • Ryu, Je-Hyeok;Moon, Jung-In;Park, Yeon-Kyung;Nguyen, Tuan Dung;Song, Jeong-Hwan;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.220-226
    • /
    • 2012
  • Pure zirconia and $x$ mol% calcia partially stabilized zirconia ($x$ = 1.5, 3, and 8) nanopowders were synthesized by hydrothermal method with various reaction temperatures for 24 hrs. The precipitated precursor of pure zirconia and $x$ mol% calcia doped zirconia was prepared by adding $NH_4OH$ to starting solutions; resulting sample was then put into an autoclave reactor. The optimal experimental conditions, such as reaction temperatures and times and amounts of stabilizer CaO, were carefully studied. The synthesized $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5, 3, and 8) powders were characterized by XRD, SEM, TG-DTA, and Raman spectroscopy. When the hydrothermal temperature was as low as $160^{\circ}C$, pure $ZrO_2$ and $x$ mol% CaO-$ZrO_2$ ($x$ = 1.5 and 3) powders were identified as a mixture of monoclinic and tetragonal phases. However, a stable tetragonal phase of zirconia was observed in the 8 mol% calcia doped zirconia nanopowder at hydrothermal temperature above $160^{\circ}C$. To observe the phase transition, the 3 mol% CaO-$ZrO_2$ and 8 mol% CaO-$ZrO_2$ nanopowders were heat treated from 600 to $1000^{\circ}C$ for 2h. The 3 mol% CaO-$ZrO_2$ heat treated at above $1000^{\circ}C$ was found to undergo a complete phase transition from mixture phase to monoclinic phase. However, the 8 mol% calcia doped zirconia appeared in the stable tetragonal phase after heat treatment. The result of this study therefore should be considered as the preparation of 8 mol% CaO-$ZrO_2$ nanopowders via the hydrothermal method.

Enhanced thermal-mechanical properties of rolled tungsten bulk material reinforced by in situ nanosized Y-Zr-O particles

  • Gang Yao;Hong-Yu Chen;Lai-Ma Luo;Xiang Zan;Yu-Cheng Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2141-2152
    • /
    • 2024
  • Tungsten is the most promising plasma facing material for fusion reactors. Rolled W-Y2(Zr)O3 bulk material has been successfully produced in this study for future fusion engineering applications. The introduction of Zr is conducive to the refinement of the second phase particles. Nano-sized Y-Zr-O particles are observed in the powder and bulk samples. Related results show that the Y-Zr-O particle dispersion distribution improves the heat load resistance of W-Y2(Zr)O3 composite material. For four-point bend experiments in the same sampling direction, the DBTT of W-Y2(Zr)O3 composite materials is lower compared to the pure tungsten. For the same material, the DBTT of the material was selected for testing along the RD direction is lower compared to the material was selected for testing along the TD direction. Findings of this study provide suggestions for the subsequent industrial preparation of nanoscale particle-doped tungsten materials.

Effects of Sintering Additives and Atmospheres on the Piezoelectric and Sintering Properties of $Pb_{0.98}Cd_{0.02}Zr_{0.36}Ti_{0.39}Ni_{0.083}Nb_{0.167}O_3$ (소결첨가제와 분위기가 $Pb_{0.98}Cd_{0.02}Zr_{0.36}Ti_{0.39}Ni_{0.083}Nb_{0.167}O_3$의 소결 및 압전 특성에 미치는 영향)

  • 문종하;박진성;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1260-1266
    • /
    • 1996
  • The effects of SiO2 MnO2 and sintering atmospheres (O2, N2) on the piezoelectric properties and densification behaviors of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 were investigated. The addition of SiO2 to the system enhanced the rate of densification but supressed the rate of grain growth. On the other hand the addition of MnO2 to the system did not nearly affect the rate of densification but increased slightly the rate of grain growth The densification of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 containing of SiO2 or MnO2 was promoted with increasing the partial pressure of O2. The relative dielectric constant ($\varepsilon$r) and piezoelectric constant (d33) of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 containing of SiO2 or MnO2 sintered under O2 atmosphere were higher than under N2 atmosphere. Whereas the mechanical quality factor (Qm) of specimens sintered under O2 atmosphere were lower than under N2 atmosphere. Thus the sintering atmosphere of O2 and N2 in Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 containing of SiO2 or MnO2 acted as donor and acceptor respectively. As the amount of SiO2 increased the relative dielectric constant ($\varepsilon$r) and piezoelectric constant (d33) of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 but the mechanical quality factor (Qm) did not nearly change, In the case of the addition of MnO2 to the system the relative dielectric constant ($\varepsilon$r) and piezoelectric constant (d33) of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 sintered under O2 atmosphere decreased rapidly with increasing the amount of MnO2 but they were unchanged with increasing the amount of MnO2 under N2 sintering atmosphere. Therefore the differences of the relative dielect-ric constant ($\varepsilon$r) and piezoelectric constant (d33) due to sintering atmosphere were diminished as the amount of MnO2 increased.

  • PDF

The Fabrication of the $ZrO_2$ Thin Film by Chemical Vapor Deposition and the Effect of the Reaction Parameters on the Deposition Characteristics (화학증착법에 의한 $ZrO_2$ 박막의 제조 및 반응변수에 따른 증착특성)

  • 최준후;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 1991
  • Zirconium dioxide(ZrO2) thin films have been deposited by chemical vapor deposition technique involving the application of gas mixture of ZrCl4, and H2O into silicon wafers. The relationships between the deposition rate and various reaction parameters such as the deposition time, the gas flow rate, the deposition temperature, and the composition of reactant gases were studied. The film was identified as nearly stoichiometric monoclinic ZrO2. The apparent activation energy is about 19Kcal/mole at surface chemical reaction controlled region. The deposition rate is mainly influenced by the H2O-forming reacting between CO2 and H2.

  • PDF

Densification Behaviour and Strengthening of Mullite/Ziroconia Composite with Addition of $ZrO_2$ or $ZrSiO_4$ ($ZrO_2$$ZrSiO_4$ 첨가에 따른 Mullite/Zirconia 복합체의 치밀화 거동 및 강도 증진)

  • 김인섭;이승석;박주석;이경희;이병하
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1080-1086
    • /
    • 1999
  • Mullite/zirconia composite was synthesized by adding zirconia and Zircon to mixture of Hapcheon kaolin(grade pink A) and aluminium nitrate salt in order to enhance strength of the mullite specimens. Kaolin and aluminium nitrate salt was mixed milled and calcined at 100$0^{\circ}C$ and then 5wt% mullite seed was added to increase mullite content. The influence of the additives(ZrO2 and ZrSiO4) and sintering temperature on the strength of the sintered specimens was investigated. The flexural strength of the specimens containing 10wt% zirconia was enhanced from 150MPa without the additive up to 300MPa after heat treatment at 156$0^{\circ}C$ In the case of addition of 15wt% zircon the strength of the specimens systhesized at 1$600^{\circ}C$ was 225 MPa.

  • PDF