• Title/Summary/Keyword: Zr oxide

Search Result 478, Processing Time 0.026 seconds

Two-step thermochemical cycles for hydrogen production using NiFe2O4/m-ZrO2 and CeO2 devices (NiFe2O4/m-ZrO2와 CeO2를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Kim, Chul-Sook;Cho, Ji-Hyun;Kim, Dong-Yeon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Two-step thermochemical cycle using ferrite-oxide($Fe_2O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The m-$ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30ml. And cerium oxide($CeO_2$) device was used for increasing $H_2$ production rate. $CeO_2$ device had low thermal resistance, however, more $H_2$ production rate than $Fe_2O_4$ device.

Evaluation of Cu Effect on Corrosion Characteristics of Zr Alloys (지르코늄합금의 부식특성에 미치는 Cu 영향 평가)

  • Kim Hyun Gil;Choi Byung Kyun;Jeong Yong Hwan
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.462-469
    • /
    • 2004
  • The effect of Cu addition on the corrosion characteristics of Zr alloys that developed for nuclear fuel cladding in KAERI (Korea Atomic Energy Research Institute) was evaluated. The alloys having different element of Nb, Sn, Fe, Cr and Cu were manufactured and the corrosion tests of the alloys were performed in static autoclave at $360^{\circ}C$, distilled water condition. The alloys were also examined for their microstructures using the optical microscope and the TEM equipped with EDS and the oxide property was characterized by using X-ray diffraction. From the result of corrosion test more than 450 days, the corrosion rate of the Zr-based alloys was changed with alloying element such as Nb, Sn, Fe, Cr and especially affected by Cu addition. The corrosion resistance was increased with increasing the Cu content and the tetragonal $ZrO_2$ layer was more stabilized on the Cu-containing alloys.

Effect of V2O5 Modification in V2O5/TiO2-ZrO2 Catalysts on Their Surface Properties and Catalytic Activities for Acid Catalysis

  • Sohn, Jong-Rack;Lee, Cheul-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2459-2465
    • /
    • 2007
  • V2O5/TiO2-ZrO2 catalyst modified with V2O5 was prepared by adding Ti(OH)4-Zr(OH)4 powder into an aqueous solution of ammonium metavanadate followed by drying and calcining at high temperatures. The characterization of prepared catalysts was performed using XRD, DSC, solid-state 51V NMR, and FTIR. In the case of calcination temperature of 500 oC, for the catalysts containing low loading V2O5 below 25 wt % vanadium oxide was in a highly dispersed state, while for catalysts containing high loading V2O5 equal to or above 25 wt % vanadium oxide was well crystallized due to the V2O5 loading exceeding the formation of monolayer on the surface of TiO2-ZrO2. The strong acid sites were formed through the bonding between dispersed V2O5 and TiO2-ZrO2. The larger the dispersed V2O5 amount, the higher both the acidity and catalytic activities for acid catalysis.

Electrical characteristic of stacked $SiO_2/ZrO_2$ for nonvolatile memory application as gate dielectric (비휘발성 메모리 적용을 위한 $SiO_2/ZrO_2$ 다층 유전막의 전기적 특성)

  • Park, Goon-Ho;Kim, Kwan-Su;Oh, Jun-Seok;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.134-135
    • /
    • 2008
  • Ultra-thin $SiO_2/ZrO_2$ dielectrics were deposited by atomic layer chemical vapor deposition (ALCVD) method for non-volatile memory application. Metal-oxide-semiconductor (MOS) capacitors were fabricated by stacking ultra-thin $SiO_2$ and $ZrO_2$ dielectrics. It is found that the tunneling current through the stacked dielectric at the high voltage is lager than that through the conventional silicon oxide barrier. On the other hand, the tunneling leakage current at low voltages is suppressed. Therefore, the use of ultra-thin $SiO_2/ZrO_2$ dielectrics as a tunneling barrier is promising for the future high integrated non-volatile memory.

  • PDF

Electromagnetic Characteristics of Superconducting Ceramics for Electrical Power Devices (전력기기 적용을 위한 초전도 세라믹의 전기자기적 특성)

  • Lee, Sang-Heon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.349-351
    • /
    • 2011
  • The formation of oxide superconducting phase fabrication of superconducting wire materials and fabrication of precise superconducting material were studied for developing superconductor application technique. The $ZrO_2$ addition reduced the particle size $BaZrO_3$ trapped in the matrix after the sintering growth. The added $ZrO_2$ was converted to fine particles of $BaZrO_3$ which is the conventional sintering temperature for YBaCuO, $Y_2Ba_1Cu_1O_5$ and CuO are formed as by products of the reaction between $ZrO_2$ and YBaCuO phase. The formation of highly $BaZrO_3$ particle appears to be responsible for the refinement of $BaZrO_3$ phase after the citric acid sintering process.

Selective Carbonization and Nitridation of Titanium in (ZrTi)O2 Powders Synthesized by Copreciptation Method

  • Shin Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.662-666
    • /
    • 2005
  • Solid solutions of $(Zr/Ti)O_2$ were prepared in powder form by the coprecipitation technique. After mixing with carbon or exposing to nitrogen gas at elevated temperature, titanium cations selectively diffused out from the oxide compound to form titanium carbide (TiC) or titanium nitride (TiN), respectively. TiN formed strong interfacial contacts between the oxide grains. In contrast, TiC formed as small crystallites on oxide grains but did not bind the matrix grains together. TiN therefore played a role in strengthening the interparticle bonding, but TiC weakened the bonding between grains. Partial diffusion of titanium cations also led to nanolayered structure being formed between the oxide grains, which provided weak interfacial layers that fractured in a step-wise fashion.

The Properties of RF Sputtered Zirconium Oxide Thin Films at Different Plasma Gas Ratio

  • Park, Ju-Yun;Heo, Jin-Kook;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.397-400
    • /
    • 2010
  • Zirconium oxide thin films deposited on the p-type Si(100) substrates by radio-frequency (RF) reactive magnetron sputtering with different plasma gas ratios have been studied by using spectroscopic ellipsometry (SE), atomic force microscopy (AFM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The deposition of the films was monitored by the oxygen gas ratio which has been increased from 0 to 80%. We found that the thickness and roughness of the zirconium oxide thin films are relatively constant. The XRD revealed that the deposited thin films have polycrystalline phases, Zr(101) and monoclinic $ZrO_2$ ($\bar{1}31$). The XPS result showed that the oxidation states of zirconium suboxides were changed to zirconia form with increasing $O_2$ gas ratio.

Physical and Chemical Investigation of Substrate Temperature Dependence of Zirconium Oxide Films on Si(100)

  • Chun, Mi-Sun;Moon, Myung-Jun;Park, Ju-Yun;Kang, Yong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2729-2734
    • /
    • 2009
  • We report here the surface behavior of zirconium oxide deposited on Si(100) substrate depending on the different substrate temperatures. The zirconium oxide thin films were successfully deposited on the Si(100) surfaces applying radio-frequency (RF) magnetron sputtering process. The obtained zirconium oxide films were characterized by X-ray photoelectron spectroscopy (XPS) for study about the chemical environment of the elements, X-ray diffraction (XRD) for check the crystallinity of the films, spectroscopic ellipsometry (SE) technique for measuring the thickness of the films, and the morphology of the films were investigated by atomic force microscope (AFM). We found that the oxidation states of zirconium were changed from zirconium suboxides ($ZrO_{x,y}$, x,y < 2) (x; higher and y; lower oxidation state of zirconium) to zirconia ($ZrO_2$), and the surface was smoothed as the substrate temperature increased.

NiO/La2O3-ZrO2/WO3 Catalyst Prepared by Doping ZrO2 with La2O3 and Modifying with WO3 for Acid Catalysis

  • Sohn, Jong-Rack;Choi, Hee-Dong;Shin, Dong-Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.821-829
    • /
    • 2006
  • A series of catalysts, $NiO/La_2O_3-ZrO_2/WO_3$, for acid catalysis was prepared by the precipitation and impregnation methods. For the $NiO/La_2O_3-ZrO_2/WO_3$ samples, no diffraction lines of nickel oxide were observed, indicating good dispersion of nickel oxide on the catalyst surface. The catalyst was amorphous to X-ray diffraction up to 300 ${^{\circ}C}$ of calcination temperature, but the tetragonal phase of $ZrO_2$ and monoclinic phase of $WO_3$ by the calcination temperatures from 400 ${^{\circ}C}$ to 700 ${^{\circ}C}$ were observed. The role of $La_2O_3$ in the catalyst was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity. The high acid strength and high acidity were responsible for the W=O bond nature of complex formed by the modification of $ZrO_2$ with $WO_3$. For 2-propanol dehydration the catalyst calcined at 400 ${^{\circ}C}$ exhibited the highest catalytic activity, while for cumene dealkylation the catalyst calcined at 600 ${^{\circ}C}$ showed the highest catalytic activity. 25-$NiO/5-La_2O_3-ZrO_2/15-WO_3$ exhibited maximum catalytic activities for two reactions due to the effects of $WO_3$ modifying and $La_2O_3$ doping.

Phase Evolution and Thermal Conductivities of (La1-xGdx)2Zr2O7 Oxides for Thermal Barrier Coatings (열차폐코팅용 (La1-xGdx)2Zr2O7 산화물의 상형성과 열전도도)

  • Kwon, Chang-Sup;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seong Won
    • Journal of Powder Materials
    • /
    • v.19 no.6
    • /
    • pp.429-434
    • /
    • 2012
  • With increase in operating temperature of gas turbine for higher efficiency, it is necessary to find new materials of TBC for replacement of YSZ. Among candidate materials for future TBCs, zirconate-based oxides with pyrochlore and fluorite are prevailing ones. In this study, phase structure and thermal conductivities of $(La_{1-x}Gd_x)_2Zr_2O_7$ oxide system are investigated. $(La_{1-x}Gd_x)_2Zr_2O_7$ system are comprised by selecting $La^{3+}/Gd^{3+}$ as A-site ions and $Zr^{4+}$ as B-site ion in $A_2B_2O_7$ pyrochlore structures. With powder mixture from each oxide, $(La_{1-x}Gd_x)_2Zr_2O_7$ oxides are fabricated via solid-state reaction at $1600^{\circ}C$. Either pyrochlore or fluorite or mixture of both appears after heat treatment. For the developed phases along $(La_{1-x}Gd_x)_2Zr_2O_7$ compositions, thermal conductivities are examined, with which the potential of $(La_{1-x}Gd_x)_2Zr_2O_7$ compositions for TBC application is also discussed.