• Title/Summary/Keyword: Zone Model

Search Result 2,424, Processing Time 0.029 seconds

Effect of Effective Compressive Strength of Concrete Strut on Structural Concrete Design (콘크리트 스트럿의 유효강도가 콘크리트 부재의 설계에 미치는 영향)

  • 윤영묵;석철호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.241-246
    • /
    • 2000
  • In the strut-tie model design of structural concrete, the importance of the effective strength of concrete strut has been overlooked by many practitioners. The authors believe that the effective strength of concrete strut is an important factor not only in determining steel tie forces but also in verifying the nodal zone strength and geometric compatibility condition of a selected strut-tie model. This study evaluate the effect of the effective strength of concrete strut on structural concrete design by applying the different effective strut strengths to the strut-tie model design of a post-tensioned anchorage zone and a continuous concrete deep beam.

  • PDF

PWN SED modeling: stationary and time-dependent leptonic scenarios

  • Kim, Seung-jong;An, Hong-jun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.43.3-43.3
    • /
    • 2018
  • We develop a model for broadband spectral energy distribution (SED) of Pulsar Wind Nebulae (PWNe). The model assumes that electrons/positrons in the pulsar wind are injected into and stochastically accelerated in the pulsar termination shock. We consider two scenarios: a stationary one-zone case and a time-evolving multi-zone case. In the latter scenario, flow properties in the PWNe (magnetic field, bulk speed) are modeled to vary in time and space. We apply the model to the broadband SED of the pulsar wind nebula 3C 58. From the modeling, we find that a broken power-law injection is required with the maximum electron energy of ~200 TeV.

  • PDF

Effect of Flare Angle in Counter-Rotating Swirler on Swirling Flow (동축 반전 스월러의 플레어 각도변화가 스월러 유동에 미치는 영향 연구)

  • Kim, Taek Hyun;Kim, Sung Don;Jin, Yu In;Min, Seong Ki
    • Journal of the Korean Society of Combustion
    • /
    • v.21 no.1
    • /
    • pp.31-37
    • /
    • 2016
  • Swirler generates the overall swirling flow in the combustion chamber and this swirling flow governs the flame stability and enhances fuel atomization. This paper deals with the flare angle effects on flow streamlines, recirculation zone, Central Toroidal Recirculation Zone(CTRZ) and Corner Recirculation Zone(CRZ) in the model combustion chamber using counter-rotating swirler. 2D PIV system was employed to obtain the velocity components and test condition was obtained using Reynolds Analogy equivalent to air test. We observed transitional flow patterns of flare angle increased. The obtained results show that the flare angle controls the behavior of Recirculation zone, Central Toroidal Recirculation Zone and Corner Recirculation Zone.

Numerical Analysis an나bout Effects of Smear Zone in Vertical Drains on Consolidation (연직배수공법의 스미어존이 압밀에 미치는 영향에 관한 수치해석)

  • Yoo, Nam-Jae;Hong, Young-Kil;Woo, Young-Min;Jun, Sang-Hyun
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.127-134
    • /
    • 2009
  • In this paper, an numerical approach is performed to investigate the effects of smear zone, occurred by penetrating vertical drains, on consolidation behavior of soft clay deposits. Such a numerical analysis is applied to the field condition to confirm its applicability. Parametric numerical analyses is carried out to study influencing factors such as permeability in smear zone, boundary of smear zone and discharge capacity of vertical drains on the consolidation of soil. As results of analyses, for the given conditions of soil, degree of consolidation is getting faster with increase of permeability of vertical drain. Degree of consolidation is delayed with decrease of permeability of smear zone. As the ratio of drain width to smear zone increases, the degree of consolidation decreases. Proposed values of influencing factors by previous researchers is found to be reliable from results of numerical analyses with Cam-clay model.

  • PDF

A Study on Work-to-Home Trip Distribution Models Based on A Stochastic Equilibrium: A Consumer Welfare Approach (확률적 평행에 토대를 둔 Work-to-Home 통행배분모형 연구)

  • 이호병
    • Journal of Korean Society of Transportation
    • /
    • v.12 no.1
    • /
    • pp.43-54
    • /
    • 1994
  • The major concern of this paper is to investigate the properties of a stochastic equilibrium for each model system in terms of a consumer welfare measure. The primary assumption for this study is that a trip-maker would choose the trip from his origin zone which maximizes his personal welfare. This assumption, finally, leads to a singly constrained gravity model. The consumer welfare measure is derived from the concept of expected welfare of randomly sampled trip-makers. Each of the four different models considered in this paper is differentiated depending on the complexity of its model or the definition of its travel function. In this study, three different regions are chosen for the purpose of taking into account the effects of different zone-systems on the properties of a stochastic equilibrium : (i) Archerville region (5 zone) ; (ii) San Francisco Bay regions (30 zones) ; (iii) Houston, TX region (199 zones). It is concluded that almost identical, "global" consumer welfare values can be obtained in some cases of the gravity-type trip distribution models based on a stochastic equilibrium.

  • PDF

MODELING OF DIRECT INJECTION DIESEL ENGINE EMISSIONS FOR A QUASI-DIMENSIONAL MULTI-ZONE SPRAY MODEL

  • Jung, D.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.165-172
    • /
    • 2004
  • Phenomenological models for direct injection diesel engine emissions including NO, soot, and HC were implemented into a full engine cycle simulation and validated with experimental data obtained from representative heavy-duty DI diesel engines. The cycle simulation developed earlier by Jung and Assanis (2001) features a quasi-dimensional, multi-zone, spray combustion model to account for transient spray evolution, fuel-air mixing, ignition and combustion. In this study, additional models for HC emissions were newly implemented and the models for NO, soot, and HC emissions were validated against experimental data. It is shown that the models can predict the emissions with reasonable accuracy. However, additional effort may be required to enhance the fidelity of models across a wide range of operating conditions and engine types.

Dynamic Fracture Properties of Modified S-FPZ Model for Concrete

  • Yon, Jung-Heum;Seo, Min-Kuk
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.25-32
    • /
    • 2007
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}(w)$ for fracture process zone (FPZ) development. The $f_{ccs}(w)$ relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The behaviors of micro-cracking, micro-crack localization and full development of the FPZ in concrete can be explained theoretically with the variation of strain energy release rate with crack extension.

Numerical Simulation for Model Gas Turbine Combustor (모형 가스터빈 연소기의 수치해석적 연구)

  • 김태한;최병륜
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1789-1798
    • /
    • 1994
  • This paper aimed for numerical simulation of complicated gas turbine combustor with swirler. For the convenience of numerical analysis, fuel nozzle and air linear hole areas of secondary and dilution zone, which are issued to jet stream, were simplified to equivalent areas of annular type. In other to solve these problems, imaginary source terms which are corresponded to supplied fuel amount were added to those of governing equation. Chemical equilibrium model of infinite reaction rate and $k-{\epsilon}-g$ model with the consideration of density fluctuation were applied. As the result, swirl intensity contributed to mixing of supplied fuel and air, and to speed up the flame velocity than no swirl condition. Temperature profiles were higher than experimental results at the upstream and lower at the downstream, but total energy balance was accomplished. As these properties showed the similar trend qualitatively, simplified simulation method was worth to apply to complicated combustor for predicting combustion characteristics.

Multiscale simulation based on kriging based finite element method

  • Sommanawat, Wichain;Kanok-Nukulchai, Worsak
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.353-374
    • /
    • 2009
  • A new seamless multiscale simulation was developed for coupling the continuum model with its molecular dynamics. Kriging-based Finite Element Method (K-FEM) is employed to model the continuum base of the entire domain, while the molecular dynamics (MD) is confined in a localized domain of interest. In the coupling zone, where the MD domain overlaps the continuum model, the overall Hamiltonian is postulated by contributions from the continuum and the molecular overlays, based on a quartic spline scaling parameter. The displacement compatibility in this coupling zone is then enforced by the Lagrange multiplier technique. A multiple-time-step velocity Verlet algorithm is adopted for its time integration. The validation of the present method is reported through numerical tests of one dimensional atomic lattice. The results reveal that at the continuum/MD interface, the commonly reported spurious waves in the literature are effectively eliminated in this study. In addition, the smoothness of the transition from MD to the continuum can be significantly improved by either increasing the size of the coupling zone or expanding the nodal domain of influence associated with K-FEM.

Development of strut-and-tie model and design guidelines for improved joint in decked bulb-tee bridge

  • Li, Lungui;He, Zhiqi;Ma, Zhongguo John;Yao, Lingkan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.2
    • /
    • pp.221-239
    • /
    • 2013
  • This paper focuses on a development of strut-and-tie model (STM) to predict the capacity of an improved longitudinal joint for decked bulb-tee bridge systems. Nine reinforced concrete beam/slab specimens anchored by spliced headed bars with different details were tested. Test results were evaluated and compared with an anticipation of the validated STM. The proposed STM provides a lower bound of the ultimate capacity of the joint zone. It shows that the lap length of headed bars has a significant effect on structural behaviors of the improved joint. To develop a full strength joint, the range of the lap length can be determined by the strength and compatibility requirement. Design recommendations to spliced headed bars, concrete strength, as well as lacer bars in the joint zone are proposed for developing a full strength joint.