• Title/Summary/Keyword: ZnSe/GaAs

Search Result 90, Processing Time 0.033 seconds

Solution-Processed Anti Reflective Transparent Conducting Electrode for Cu(In,Ga)Se2 Thin Film Solar Cells (CIGS 박막태양전지를 위한 반사방지특성을 가진 용액공정 투명전극)

  • Park, Sewoong;Park, Taejun;Lee, Sangyeob;Chung, Choong-Heui
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.131-135
    • /
    • 2020
  • Silver nanowire (AgNW) networks have been adopted as a front electrode in Cu(In,Ga)Se2 (CIGS) thin film solar cells due to their low cost and compatibility with the solution process. When an AgNW network is applied to a CIGS thin film solar cell, reflection loss can increase because the CdS layer, with a relatively high refractive index (n ~ 2.5 at 550 nm), is exposed to air. To resolve the issue, we apply solution-processed ZnO nanorods to the AgNW network as an anti-reflective coating. To obtain high performance of the optical and electrical properties of the ZnO nanorod and AgNW network composite, we optimize the process parameters - the spin coating of AgNWs and the concentration of zinc nitrate and hexamethylene tetramine (HMT - to fabricate ZnO nanorods. We verify that 10 mM of zinc nitrate and HMT show the lowest reflectance and 10% cell efficiency increase when applied to CIGS thin film solar cells.

Microstructure of $\textrm{Zn}_{1-x}\textrm{Fe}_{x}\textrm{Se}$ Epilayers Grown by Molecular Beam Epitaxy (MBE에 의해 성장된 $\textrm{Zn}_{1-x}\textrm{Fe}_{x}\textrm{Se}$ 반도체 박막의 미세구조)

  • Park, Gyeong-Sun
    • Korean Journal of Materials Research
    • /
    • v.7 no.9
    • /
    • pp.805-810
    • /
    • 1997
  • MBE에 의해 성장된 Zn$_{1-x}$ Fe$_{x}$Se박막의 미세구조가 고분해능 투과전자현미경에 의해 연구되었다.Zn$_{1-x}$ Fe$_{x}$Se 박막에서 CuAu-l과 CuPt의 규칙격자가 발견되었다. 이 규칙격자는 전자 회절과 단면 고분해능 격자 이미지에 의해 조사되었다.CuAu-l규칙격자는 (001)InP기판 위에 성장된 Zn$_{1-x}$ Fe$_{x}$Se(x=0.43)에서 관찰되었고, 반면에 CuPt규칙격자는 (001)GaAs기판 위에 성장된 Zn$_{1-x}$ Fe$_{x}$Se(x=0.43)에서 관찰되었다.43)에서 관찰되었다.

  • PDF

Photocurrent study on the splitting of the valence band and growth of $ZnIn_{2}Se_{4}$ single crystal thin film by hot wall epitaxy (Hot wall epitaxy(HWE)법에 의한 $ZnIn_{2}Se_{4}$ 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Hong, Kwang-Joon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.5
    • /
    • pp.217-224
    • /
    • 2008
  • A stoichiometric mixture of evaporating materials for $ZnIn_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $ZnIn_2Se_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperatures were $630^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnIn_2Se_4$ single crystal thin films measured from Hall effect by van der Pauw method are $9.41\times10^{16}cm^{-3}$ and $292cm^2/v{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $ZnIn_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.8622eV-(5.23\times10^{-4}eV/K)T^2/(T+775.5K)$. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnIn_2Se_4$ have been estimated to be 182.7 meV and 42.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnIn_2Se_4/GaAs$ epilayer. The three photo current peaks observed at 10 K are ascribed to the $A_{1}-$, $B_{1}-exciton$ for n = 1 and $C_{27}-exciton$ peaks for n = 27.

MOVPE of ZnSe with DIPSe and DMZn

  • Soo, Huh-Jeung;Ok, Lim-Jeong
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.118-121
    • /
    • 1998
  • Diisopropylselenide (DIPSe) is employed for the metalorganic vapor phase epitaxy (MOVPE) of ZnSe in order to eliminate premature gas phase reaction while maintaining negligible carbon incorporation and preserving relatively low growth temperature. In combination with dimethylzinc, single crystalline ZnSe layers were grown on GaAs at temperature around 450$^{\circ}C$. Secondary ion mass spectrometry showed a negligible carbon incorporation in ZnSe films grown from DIPSe even at high [Ⅵ]/[II] ratios, in contrast of a carbon concentration of 1021 cm-3 in ZnSe films grown from diallyselenide (DASe). Crystalline and interface quality are demonstrated by secondary electron microscopy, secondary ion mass spectroscopy and double crystal X-ray diffraction.

  • PDF

Defects Evaluation of Blue Light Emitting Materials by Wet Etching and Transmission Electron Microscoppy

  • Hong, Soon-Ku;Kim, Bong-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.105-106
    • /
    • 1998
  • Evaluation of def3ects by etch-ppit formation was studied. A NaOH(30 mol%) etchant was found useful for etch-ppit developpment on ZnSe-based eppilayers grown on (001) gaAs. And a H3ppO4(85 mol%) was used in order to developp etch-ppits on GaN-base eppilayers grown on (0001) Al2O3 After etch-ppit formation on the surfsce. Transmission Electron Microscoppy(TEM) was cppmdicted. By etch-ppit developpment and TEM observation we could determine the defect typpes by etch-ppit configurfations and found origin of etch-ppit in the cse of ZnSe-based materials. Based uppon these results we can do defect identification by etch-ppit test simpply. In the case of GaN-based materials we could evaluate nanoppippe density. however high density of threading dislocations in GaN eppilayers were not revealed by etch-ppit developpment. Based uppon these results we can evaluate the nanoppippe density which difficult to evaluate using TEM beacause of its small size(diameter). And at ppresent status direct matching of etch-ppit density to dislocation density would make severe mistake.

  • PDF

Growth and Electrical Properties of ZnAl2Se4 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 ZnAl2Se4 단결정 박막 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Hyangsook;Bang, Jinju;Lee, Kijung;Kang, Jongwuk;Hong, Kwangjoon
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.714-721
    • /
    • 2013
  • A stoichiometric mixture of evaporating materials for $ZnAl_2Se_4$ single-crystal thin films was prepared in a horizontal electric furnace. These $ZnAl_2Se_4$ polycrystals had a defect chalcopyrite structure, and its lattice constants were $a_0=5.5563{\AA}$ and $c_0=10.8897{\AA}$.To obtain a single-crystal thin film, mixed $ZnAl_2Se_4$ crystal was deposited on the thoroughly etched semi-insulating GaAs(100) substrate by a hot wall epitaxy (HWE) system. The source and the substrate temperatures were $620^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single-crystal thin film was investigated by using a double crystal X-ray rocking curve and X-ray diffraction ${\omega}-2{\theta}$ scans. The carrier density and mobility of the $ZnAl_2Se_4$ single-crystal thin film were $8.23{\times}10^{16}cm^{-3}$ and $287m^2/vs$ at 293 K, respectively. To identify the band gap energy, the optical absorption spectra of the $ZnAl_2Se_4$ single-crystal thin film was investigated in the temperature region of 10-293 K. The temperature dependence of the direct optical energy gap is well presented by Varshni's relation: $E_g(T)=E_g(0)-({\alpha}T^2/T+{\beta})$. The constants of Varshni's equation had the values of $E_g(0)=3.5269eV$, ${\alpha}=2.03{\times}10^{-3}eV/K$ and ${\beta}=501.9K$ for the $ZnAl_2Se_4$ single-crystal thin film. The crystal field and the spin-orbit splitting energies for the valence band of the $ZnAl_2Se_4$ were estimated to be 109.5 meV and 124.6 meV, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_5$ states of the valence band of the $ZnAl_2Se_4/GaAs$ epilayer. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-exciton for n = 1 and $C_{21}$-exciton peaks for n = 21.

Development of Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS)-Based Thin Film Solar Cells with In and Ga Free Absorber Materials (In과 Ga가 미포함 된 Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS) 박막형 태양전지 개발 현황)

  • Shin, Seung-Wook;Han, Jun-Hee;Gang, Myeng-Gil;Yun, Jae-Ho;Lee, Jeong-Yong;Kim, Jin-Hyeok
    • Korean Journal of Materials Research
    • /
    • v.22 no.5
    • /
    • pp.259-273
    • /
    • 2012
  • Chalcogenide-based semiconductors, such as $CuInSe_2$, $CuGaSe_2$, Cu(In,Ga)$Se_2$ (CIGS), and CdTe have attracted considerable interest as efficient materials in thin film solar cells (TFSCs). Currently, CIGS and CdTe TFSCs have demonstrated the highest power conversion efficiency (PCE) of over 11% in module production. However, commercialized CIGS and CdTe TFSCs have some limitations due to the scarcity of In, Ga, and Te and the environmental issues associated with Cd and Se. Recently, kesterite CZTS, which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of $10^4cm^{-1}$, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTS-based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. The recent development of kesterite-based CZTS thin film solar cells is summarized in this work. The new challenges for enhanced performance in CZTS thin films are examined and prospective issues are addressed as well.

Growth and Photoconductive Characteristics of $ZnGa_2Se_4$ Epilayers by the Hot Wall Epitaxy

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.263-266
    • /
    • 2004
  • The stochiometric mix of evaporating materials for the $ZnGa_2Se_4$ single crystal thin films were prepared from horizental furnace. The polycrystal structure obtaind from the power x-ray diffraction was defect chalcopyrite. The lattice costants $a_0\;and\;c_0\;were\;a_0=5.51\;A,\;c_0=10.98\;A$. To obtains the single crystal thin films, $ZnGa_2Se_4$ mixed crystal were deposited on throughly etched Si(100) by the Hot Wall Epitaxy (HWE) system. The temperates of the source and the substrate were $590^{\circ}C\;and\;450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. In order to explore the applicability as a photoconductive cell, we measured the sensitivity($\gamma$), the ratio of photocurrent to dark current(pc/dc), maximum allowable rower dissipation(MAPD), spectral response and response time.

  • PDF

Characterization of $Cu(In_xGa_{1-x})Se_2$ Solar Cells with Ga Content (Ga 함량에 따른 $Cu(In_xGa_{1-x})Se_2$ 태양전지의 특성분석)

  • Kim, Seok-Ki;Kwon, Se-Han;Lee, Doo-Yeol;Lee, Jeong-Churl;Kang, Ki-Whan;Yoon, Kyung-Hoon;Ahn, Byung-Tae;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07d
    • /
    • pp.1264-1267
    • /
    • 1998
  • $Cu(In_xGa_{1-x})Se_2$ thin films were prepared and characterized with various Ga contents. As the Ga content increased, the grain size of CIGS film became smaller. The 2 $\theta$ values in XRD patterns were shifted to larger values and the overlapped peaks were splitted. The energy bandgap increased from 1.04 to 1.67 eV and the resistivity decreased. The solar cell fabricated with ZnO/CdS/$Cu(In_{0.7}Ga_{0.3})Se_2/Mo$ structure yielded an efficeincy of 14.48% with an acitive area of 0.18 $cm^2$. The efficiency decreased with further increase of Ga content.

  • PDF

Improvement of Efficiency of Cu(Inx,Ga1-x)Se2 Thin Film Solar Cell by Enhanced Transparent Conductive Oxide Films (투명 전도막 개선을 통한 Cu(Inx,Ga1-x)Se2 박막태양전지 효율 향상에 관한 연구)

  • Kim, Kilim;Son, Kyeongtae;Kim, Minyoung;Shin, Junchul;Jo, Sunghee;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • In this study, Sputtering method was used to grow Al-dopes ZnO films on a CIGS absorber layer, in order to examine the effect of TCO on properties of CIGS solar cell devices. Structural, electrical and optical properties were investigated by varied thickness of Al-dopes ZnO films. Also, relation to the application as a window layer in CIGS thin film solar cell were studied. It was found that the electrical and structural properties of ZnO:Al film improved with increasing its thickness. However, the optical properties degraded. Jsc of the fabricated CIGS based solar cells was significantly influenced by the variation of the ZnO:Al window layer thickness. Because ZnO:Al window layer is one of the Rs factors in CIGS solar cell. Rs has the biggest influence on efficiency characteristic. In order to obtain high efficiency of CIGS solar cell, ZnO:Al window layer should be fabricated with electrically and optically optimized.