• Title/Summary/Keyword: ZnSb

Search Result 214, Processing Time 0.024 seconds

Real time control of the growth of Ge-Sb-Te multi-layer film as an optical recording media using in-situ ellipsometry (In-situ ellipsometry를 사용한 광기록매체용 Ge-Sb-Te 다층박막성장의 실시간 제어)

  • 김종혁;이학철;김상준;김상열;안성혁;원영희
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.3
    • /
    • pp.215-222
    • /
    • 2002
  • Using an in-situ ellipsometer, we monitored the growth curve of optical recording media in real time. For confirmation of the thickness control using in-situ ellipsometry, we analyzed the deposited multi-layer sample made of Ge-Sb-Te alloy film and ZnS-Si0$_2$ dielectric films using an exsitu spectroscopic ellipsometer. The target material in the first sputtering gun is ZnS-SiO$_2$ as the protecting dielectric layer and that in the second gun is Ge$_2$sb$_2$Te$_{5}$ as the receding layer. While depositing ZnS-SiO$_2$, Ge$_2$Sb$_2$Te$_{5}$ and ZnS-SiO$_2$ films on c-Si substrate in sequence, we measured Ψ $\Delta$ in real time. Utilizing the complex refractive indices of Ge$_2$Sb$_2$Te$_{5}$ and ZnS-SiO$_2$ obtained from the analysis of spectroscopic ellipsometry data, the evolution of ellipsometric constants Ψ, $\Delta$ with thickness is calculated. By comparing the calculated evolution curve of ellipsometric constants with the measured one, and by analyzing the effect of density variation of the Ge$_2$Sb$_2$Te$_{5}$ recording layer on ellipsometric constants with thickness, we precisely monitored the growth rate of the Ge-Sb-Te multilayer and controlled the growth process. The deviation of the real thicknesses of Ge-Sb-Te multilayer obtained under the strict monitoring is post confirmed to be less than 1.5% from the target structure of ZnS-SiO$_2$(1400 $\AA$)IGST(200 $\AA$)$\mid$ZnS-SiO$_2$(200$\AA$).(200$\AA$).

Electrical Characteristics and Microstructure Control of Zinc Oxide Viaristors (ZnO 바리스터의 미세구조제어와 전기적 특성)

  • Kim, Gyeong-Nam;Han, Sang-Mok
    • Korean Journal of Materials Research
    • /
    • v.1 no.2
    • /
    • pp.65-70
    • /
    • 1991
  • The effect of inclusion particles on the microstructure development and electrical characteristics in the systems $ZnO-Bi_2O_3-CoO-Sb_2O_3\;and\;ZnO-Bi_2O_3-CoO-Sb_2O_3-Cr_2O_3 were investigated. The growth of ZnO grains, which was controlled by the spinel particles during sintering, decreased with increasing amount of spinel particles. Addition of $Cr_2O_3(0.5mol\%) increased the breakdown voltage without affecting the non-linear characteristics. The calculated barrier voltage of the $ZnO-Bi_2O_3-CoO-Sb_2O_3\;-and\;ZnO-Bi_2O_3-CoO-Sb_2O_3-Cr_2O_3$ systems were about 3.1V and 2.9V, respectively.

  • PDF

Synthesis and Thermoelectric Properties of Zn4Sb3 by Mechanical Alloying Process (기계적 합금화에 의한 Zn4Sb3 열전소재의 합성 및 열전 특성)

  • Ur Soon-Chul
    • Korean Journal of Materials Research
    • /
    • v.14 no.8
    • /
    • pp.535-541
    • /
    • 2004
  • Thermoelectric $Zn_{4}Sb_3$ alloy powders were synthesized from elemental powders by mechanical alloying process and consolidated by hot pressing under controlled atmosphere. Single phase $Zn_{4}Sb_3$ was not obtained using a nominal stoichiometric composition, but near single phase $Zn_{4}Sb_3$ with remnant elemental Zn having a relatively high density was produced using a nominally 11.7 $at.\%$ Zn rich powders. Phase transformations during mechanical alloying were systematically investigated using XRD and SEM. Thermoelectric and transport properties were evaluated for the hot pressed specimens and compared with results of analogous studies.

The Effect of Sb2O3 Additive on the Electrical Properties of ZnO Varistor (Sb2O3 첨가제가 ZnO 배리스터의 전기적 특성에 미치는 영향)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1697-1701
    • /
    • 2016
  • The leakage conduction and critical voltage characteristic of ZnO ceramic were investigated as a function of $Sb_2O_3$ concentration. Leakage conduction in the ohmic region increased with increasing $Sb_2O_3$ concentration and was attributed to the potential barrier height. The nonlinear coefficient increased with an increasing amount of $Sb_2O_3$. It was found that increases in the apparent critical voltages were associated with the lowered donor concentration in the grain boundary of between two ZnO grains. And the decrease of donor concentration on doping with $Sb_2O_3$ additive was attributed to the lowered capacitance in the grain boundary layer.

Sintering and Electrical Properties of Ni-doped ZnO-Bi2O3-Sb2O3 (Ni를 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.11
    • /
    • pp.941-948
    • /
    • 2009
  • The present study aims at the examination of the effects of 1 mol% NiO addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by density, XRD, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Ni-doped ZBS (ZBSN) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered in ZBS (Sb/Bi=1.0) by Ni doping. The reproduction of pyrochlore was suppressed by the addition of Ni in ZBS. Between two polymorphs of $Zn_7Sb_2O_{12}$ spinel ($\alpha$ and $\beta$), microstructure of ZBSN (Sb/Bi=0.5) composed of a-spinel was more homogeneous than $Sb/Bi{\geq}1.0$ composed of $\beta$-spinel phase. In ZBSN, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha\;=\;6{\sim}11$) and independent on microstructure according to Sb/Bi ratio. Doping of Ni to ZBS seemed to form ${V_0}^{\cdot}$ (0.33 eV) as dominant bulk defect. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature.

Synthesis and characterization of thermoelectric Zn1-xAgxSb compounds (열전재료 Zn1-xAgxSb의 제조와 특성)

  • Kim, In-Ki;Oh, Han-Jun;Jang, Kyung-Wook
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.162-166
    • /
    • 2017
  • Thermoelectric compounds of $Zn_{1-x}Ag_xSb$ with x = 0~0.2 were prepared by vacuum melting and quenching process and their crystal phases and thermoelectric properties were examined. It was found that free metallic Sb phases were formed in the compound with x = 0.05, leading to increasing the electrical conductivities. The power factors were significantly affected by the electrical conductivity rather than Seebeck coefficient. When x > 0.05, the peak intensities of $Ag_3Sb$ phases in XRD patterns were increased and those of free Sb phases were weakened. These changes of second phases resulted in decreasing the electrical conductivities and the power factors and became more obvious in the compound with x = 0.2.

Effects of Grain-Size Distribution on the Breakdown Voltage in ZnO Varistors (입도분포가 ZnO 바리스터의 임계전압에 미치는 영향)

  • 김경남;한상목;김대수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.199-205
    • /
    • 1993
  • Effects of grain size distribution on the breakdown voltage of ZnO varistors were investigated in the ZnO-Bi2O3-CoO-Sb2O3 and ZnO-Bi2O3-CoO-Sb2O3-Cr2O3 systems, respectively. The grain size was increased with increasing sintering temperature maintaining lognormal distribution in both systems. The width of grain size distribution of ZnO-Bi2O3-CoO-Sb2O3 system was narrower than that of ZnO-Bi2O3-CoO-Sb2O3 system. The breakdown voltage(Vb) was decreased by increasing sintering temperature(1000~135$0^{\circ}C$) and sintering time(0.5~5hr), due to the enhancement of ZnO grain growth. The current path of the ZnO varistor was dependent on the distribution of the largest grains (chains of long grains) between the electrodes.

  • PDF

The Effect of ZnO Addition on the Electric Properties and Microstructure of $Pb(Mn_{1/3}Sb_{2/3})O_3-Pb(Zr_{0.52}Ti_{0.48})O_3$Ceramics ($Pb(Mn_{1/3}Sb_{2/3})O_3-Pb(Zr_{0.52}Ti_{0.48})O_3$계 세라믹스의 전기적 특성과 미세구조에 미치는 ZnO 첨가영향)

  • 김민재;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1108-1114
    • /
    • 1999
  • Microstructure and electrical properties of ZnO-doped (0-5 mol%) 0.05 Pb(Mn1/3Sb2/3)O3-0.95 PZT ceramics were investigated. Sintering temperature was decreased to 100$0^{\circ}C$ due to eutetic reaction between PbO and ZnO. Grain-size increased up to adding 1mol% ZnO and then decreased. Compositions of grain and grain-boundary were investigated by WDS. Lattice parameter was decreased with ZnO addition. Density increased with ZnO addition and reached to the maximum of 7.84(g/cm2) at 2 mol% ZnO. The effect of ZnO on electrical properties of PMS-PZT was investigated. At 3mol% ZnO addition electromechanical coupling factor(kp) was about 50% and relative dielectric constant($\varepsilon$33/$\varepsilon$0) was 997 Mechanical quality factor(Qm) decreased with ZnO addition. Lattice parameters and tetragonality(c/a) were measured to investigate relationship between the electric properties and substitution of Zn2+. At 3 mol% ZnO tetragonality was maximiged at c/a=1.0035 Curie temperature (Tc) decreased slightly with ZnO addition.

  • PDF

Sintering and Electrical Properties According to Sb/Bi Ratio(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3 Varistor (Sb/Bi비에 따른 5원계 바리스터의 소결거동 및 전기적 특성(I) : ZnO-Bi2O3-Sb2O3-Mn3O4-Cr2O3)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.675-681
    • /
    • 2012
  • We aimed to examine the co-doping effects of 1/6 mol% $Mn_3O_4$ and 1/4 mol% $Cr_2O_3$ (Mn:Cr = 1:1) on the reaction, microstructure, and electrical properties, such as the bulk defects and grain boundary properties, of ZnO-$Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi = 0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Cr-doped ZBS, ZBS(MnCr) varistors were controlled using the Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$), ${\alpha}$-spinel ($Zn_7Sb_2O_{12}$), and ${\delta}-Bi_2O_3$ (also ${\beta}-Bi_2O_3$ at Sb/Bi ${\leq}$ 1.0) were detected for all of the systems. Mn and Cr are involved in the development of each phase. Pyrochlore was decomposed and promoted densification at lower temperature on heating in Sb/Bi = 1.0 system by Mn rather than Cr doping. A more homogeneous microstructure was obtained in all systems affected by ${\alpha}$-spinel. In ZBS(MnCr), the varistor characteristics were improved dramatically (non-linear coefficient, ${\alpha}$ = 40~78), and seemed to form ${V_o}^{\cdot}$(0.33 eV) as a dominant defect. From impedance and modulus spectroscopy, the grain boundaries can be seen to have divided into two types, i.e. one is tentatively assigned to ZnO/$Bi_2O_3$ (Mn,Cr)/ZnO (0.64~1.1 eV) and the other is assigned to the ZnO/ZnO (1.0~1.3 eV) homojunction.

Effect of Sb/Bi Ratio on Sintering and Grain Boundary Properties of ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 Varistor (Sb/Bi비가 ZnO-Bi2O3-Sb2O3-Mn3O4-Co3O4 바리스터의 소결과 입계 특성에 미치는 영향)

  • Hong, Youn-Woo;Lee, Young-Jin;Kim, Sei-Ki;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.11
    • /
    • pp.878-885
    • /
    • 2012
  • In this study we aims to examine the co-doping effects of 1/3 mol% $Mn_3O_4+Co_3O_4$ (1:1) on the reaction, microstructure, and electrical properties such as the bulk defects and grain boundary properties of $ZnO-Bi_2O_3-Sb_2O_3$ (ZBS; Sb/Bi=0.5, 1.0, and 2.0) varistors. The sintering and electrical properties of Mn,Co-doped ZBS, ZBS(MCo) varistors were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed and promoted densification at lower temperature on heating in Sb/Bi=1.0 by Mn rather than Co. Pyrochlore on cooling was reproduced in all systems however, spinel (${\alpha}$- or ${\beta}$-polymorph) did not formed in Sb/Bi=0.5. More homogeneous microstructure was obtained in $Sb/Bi{\geq}1.0$ In ZBS(MCo), the varistor characteristics were improved drastically (non-linear coefficient, ${\alpha}$=30~49), and seemed to form $Zn_i^{..}$(0.17 eV) and $V_o^{\bullet}$(0.33 eV) as dominant defects. From impedance and modulus spectroscopy (IS & MS), the grain boundaries have divided into two types, i.e. the one is tentatively assign to $ZnO/Bi_2O_3(Mn,Co)/ZnO$ (0.47 eV) and the other ZnO/ZnO (0.80~0.89 eV) homojunctions.