• 제목/요약/키워드: ZnO varistors

검색결과 211건 처리시간 0.022초

ZnO 나노파우더 바리스터의 제작과 전기적 특성 (Fabrication and Electrical Characteristics of ZnO Nano-powder Varistors)

  • 유인성;정종엽;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제18권12호
    • /
    • pp.1117-1123
    • /
    • 2005
  • In this study, our varistors based on M. Matsuoka's composition were fabricated with ZnO nano-powder whose sizes were 50 nm and 100 nm. Before fabrication of ZnO nano-powder varistors, structure and Phase were analyzed by FE-SEM and XRD with size of ZnO nano-powders to obtain manufacturing information to fabricate the first ZnO varistors using by nano-powders. As a results of these analyses, calcination and sintering temperatures were respectively designed at $600^{\circ}C\;and\;1050^{\circ}C$. ZnO nano-powder varistors were analyzed by SEM and XRD to measure the changes of microstructures and phase after sintered by out process conditions. Also, electrical properties of ZnO nano-powder varistors were obtained by capacitance-voltage, frequency-teal impedance, and current-voltage corves. Our ZnO nano-powder varistors had about 2.5 times of electric field at varistor voltage as compared with normal ZnO varistors fabricated with micro-powder. Also, leakage current and non-liner coefficient respectively had $2.0{\times}10^{-6}A/cm^{-2}$ and 41 for ZnO nano-powder varistors with 50 nm.

프랙탈을 이용한 ZnO 바리스터 표면 구조 및 전기적 특성 (The Structure and Electrical Characteristics of ZnO Varistors Surface using-Fractal)

  • 오수홍;홍경진;이진;이준웅;김태성
    • 한국전기전자재료학회논문지
    • /
    • 제13권10호
    • /
    • pp.834-839
    • /
    • 2000
  • The structural properties that SEM photograph of ZnO varistors surface studied by fractal mathematics program were investigated to verify the relations of electrical characteristics. The SEM photograph of ZnO varistors surface were changed by binary code and the grain shape of that were analyzed by fractal dimension. The void of ZnO varistors surface was found by fractal program. The relation between grain density and electrical properties depend on fractal dimension. The grain size in ZnO varistors surface was decreased by increasing of Sb$_2$O$_3$ addition. The spinel structure was formed by Sb$_2$O$_3$addition and it was depressed the ZnO grain formation. The grain size of ZnO by Sb$_2$O$_3$addition were from 5 to 10[${\mu}{\textrm}{m}$]. Among of ZnO varistors, fractal dimension of ZnO4 was very high as a 1.764. The density of grain boundary in ZnO2 and ZnO3 varistors surface was 15[%] by formed spinal structure. The breakdown electric field of ZnO2 that fractal dimension has 1.752 was very high to be 8.5[kV/cm]. When the fractal dimensin was high, the grain shape of ZnO varistors was complex and the serial layers of ZnO grain was increased.

  • PDF

배전급 피뢰기용 ZnO 바리스터 소자의 미세구조 및 서지 특성에 관한 연구 (A Study on the microstructure and Surge Characteristics of ZnO varistors for distribution Arrester)

  • 김석수;조한구;박태곤;박춘현;정세영;김병규
    • 한국전기전자재료학회논문지
    • /
    • 제15권2호
    • /
    • pp.190-197
    • /
    • 2002
  • In this thesis, ZnO varistors with various formulation, such as A∼E, were fabricated according to ceramic fabrication method. The microstructure, electrical properties, and surge characteristics of ZnO varistors were investigated according to ZnO varistors with various formulation. In the microstructure, A∼E\`s ZnO varistor ceramics sintered at 1130$\^{C}$ was consisted of ZnO grain(ZnO), spinel phase (Zn$\_$2.33/Sb$\_$0.67/O$\_$4/), Bi-rich phase(Bi$_2$O$_3$) and intergranuler phase, wholly. Lightning impulse residual voltage of A, B, C and E\`s ZnO varistors suited standard characteristics, below 12kV at current of 5kA. On the contrary, D\`s ZnO varistor exhibited high residual voltage as high reference voltage. In the accelerated aging test, leakage current and watt loss of B, C and D\`s ZnO varistors increases abruptly with stress time under the first a.c. stress(115$\^{C}$/3.213kV/300h). Consequently, C varistor exhibited a thermal run away. On the contrary, leakage current and watt loss of A and C\`s ZnO varistors which show low initial leakage current exhibited constant characteristics. After high current impulse test, A\`s ZnO varistor has broken the side of varistor but impulse current flowed. On the contrary, E\`s ZnO Varistor exhibited good discharge characteristics which the appearance of varistor was not wrong such as puncture, flashover, creaking and other significant damage. After long duration impulse current test, E\`s ZnO varistor exhibited good discharge characteristics which the appearance of varistor was not wrong such as puncture, flashover, creaking and other significant damage. After high current impulse test and long duration impulse current test, E\`s ZnO varistor exhibited very good characteristics which variation rate of residual voltage is 1.4% before and after test.

Pechini 방법으로 제조된 ZnO 바리스터의 소결 거동 및 전기적 특성 (Somteromg Behavior and Electrical Characteristics of ZnO Variators Prepared by Pechini Process)

  • 윤상원;심영재;조성걸
    • 한국세라믹학회지
    • /
    • 제35권5호
    • /
    • pp.499-504
    • /
    • 1998
  • Pechini 방법으로 98.0 mol% ZnO, 1.0mol% $Bi_2O_3$, 0.5mol% CaO, 그리고 0.5mol% $MnO_2$ 조성의 ZnO 바리스터를 제조하여 소결거동과 전기적 특성을 관찰하였다. Pechini 방법으로 제조된 ZnO 바리스터 분말은 평균 입자크기가 $1.5\mu$m 정도이며 좁은 입도 분포를 보였다. $1100^{\circ}C$의 소결온도에서 전형적인 액상소결 과정에서 나타나는 입자성장 거동을 보였으며, 균일한 입자크기와 입계를 따라 Bi가 풍부한 액상이 고르게 분포된ZnO 바리스터를 제조할 수 있었다. 본 실험에서 비직선계수는 40~60 정도의 비교적 높은 값을 보였으며, 항복전압의 역수는 입자크기에 거의 비례하였다. 이것은 Pechini 방법으로 제조한 ZnO 바리스터가 균일한 입자크기와 균일한 액상의 분포를 갖는 바람직한 미세구조를 갖는 것을 보여 주는 것으로, Pechini 방법을 이용함으로서 ZnO 바리스터의 미세구조를 효과적으로 조절할 수 있으므로, 그 전기적 특성의 제어가 가능할 것으로 사료된다.

  • PDF

피뢰기용 ZnO 바리스터 소자의 미세구조 및 전기적 특성에 관한 연구 (A study on the Microstructure and electrical characteristics of ZnO varistors for arrester)

  • 김석수;조한구;박태곤;박춘현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.489-494
    • /
    • 2001
  • In this thesis, the microstructure and electrical properties of ZnO varistors were investigated according to ZnO varistors with various formulation. A∼E's ZnO varistor ceramics were exhibited good density, 95% of theory density and low porosity, 5%, wholly. The average grain size of A-E's ZnO varistor ceramics exhibited 11.89$\mu\textrm{m}$, 13.57$\mu\textrm{m}$, 15.44$\mu\textrm{m}$, 11.92$\mu\textrm{m}$, 12.47$\mu\textrm{m}$, respectively. Grain size of C's ZnO varistor is larger and grain size of A and D's are smaller than other varistors. In the microstructure, A∼E's ZnO varistor ceramics sintered at l130$^{\circ}C$ was consisted of ZnO grain(ZnO), spinel phase(Zn$\sub$2.33/Sb$\sub$0.67/O$_4$), Bi-rich Phase(Bi$_2$O$_3$) and inergranular phase, wholly. Reference voltage of A∼E's ZnO varistor sintered at 1130$^{\circ}C$ decreased in order D, E > A > B > C's ZnO varistors. Nonlinear exponent of varistors exhibited high characteristics, above 30, wholly. Consequently, C's ZnO varistor exhibited good nonlinear exponent, 68. Lightning impulse residual voltage of A, B, C and E's ZnO varistors suited standard characteristics, below 12kV at current of 5kA.

  • PDF

The Effect of Additives on Twining in ZnO Varistors

  • Han, Se-Won;Kang, Hyung-Boo
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.207-212
    • /
    • 1998
  • By comparison of the experimental results in two systems of ZnO varistors, it's appear that Sb2O3 is the indispensable element for twining in ZnO varistors and the Zn7Sb2O12 spinel acts as the nucleus to form twins. Al2O3 is not the origin of twining in ZnO varistor, but it was found that Al2O3 could strengthen the twining and form a deformation twining by ZnAl2O4 dragging and pinning effect. The inhibition ratios of grain and nonuniformity of two systems ZnO varistors increase with the increase of Al2O3 content. The twins affect the inhibition of grain growth, the mechanism could be explained follow as: twins increase the mobility viscosity of ZrO grain and grain boundary, and drag ZrO grain and liquid grain boundary during the sintering, then the grain growth is inhibited and the microstructure becomes more uniform.

  • PDF

$Y_{2}O_{3}$가 첨가된 $Pr_{6}O_{11}$계 ZnO 바리스터의 d.c. 스트레스에 따른 안정성 (Stability of $Pr_{6}O_{11}$-Based ZnO Varistors Doped with $Y_{2}O_{3}$ under d.c. Stresses)

  • 윤한수;류정선;남춘우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.551-554
    • /
    • 2000
  • The stability of $Pr_6$$O_{11}$-based ZnO varistors doped with $Y_2$$O_3$ was investigated under various d.c. stresses. The varistors were sintered at $1350^{\circ}C$ for 1h in the addition range of 0.0 to 4.0 mol% $Y_2$$O_3$. The varistors doped with $Y_2$$O_3$ exhibited much higher nonlinearity than that without $Y_2$$O_3$. In Particular, the varistors containing 0.5 mol% $Y_2$$O_3$ showed very excellent V-I characteristics, which the nonlinear exponent was 51.19 and the leakage current was 1.32 $\mu\textrm{A}$. And these varistors also showed an excellent stability, which the variation rate of the varistor voltage and the nonlinear exponent were -0.80% and -2.17%, respectively, under 4th d.c. stress, such as (0.80 $V_ {1mA}$/$90^{\circ}C$/12h)+(0.85 $V_{1mA}$/$115^{\circ}C$/12h)+(0.90 $V_{1mA}$/$120^{\circ}C$/12h)+(0.95 $V_{1mA}$/$125^{\circ}C$/12h). Consequently, since $Pr_ 6$$O_{11}$-based ZnO varistors doped with 0.5 mol% $Y_2$$O_3$ have an excellent stability as well as good nonlinearity, it is expected to be usefully used to develop the superior varistors in future.

  • PDF

ZnO 나노분말로 제조한 Bi계 바리스터의 써지내량 특성 (Characteristics on the Surge Capability of Bi-based Varistor Fabricated with ZnO Nano-powder)

  • 왕민성;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제19권9호
    • /
    • pp.862-867
    • /
    • 2006
  • Bi-based nano-varistors and micro-varistors fabricated with each ZnO nano-powder and micro-powder were studied about characteristics on the surge capability in this study. ZnO nano-varistors were sintered in air at $1050^{\circ}C$ for 2 hr. The voltage-current and residual voltage properties of ZnO nano-varistor were compared with their of ZnO micrio-varistor. As a result of these properties, our ZnO nano-varistor has about 3 times at operating voltage as compared with conventional ZnO varistor fabricated with micro-powder and the residual voltage was 8.06 kV at nominal discharge current 101kA in the lighting impulse current test. And then the residual voltage rate 1.72 of our nano-varistor has had better performance than the 1.79 of micro-varistor because ZnO nano-varistor has shown much quick response property because of increasing effective cross-section area. Also, to analysis surge capability took thermal images for pyrexia temperature distribution with each of the varistors after operating varistors. Nano-varistor doesn't have shown local overheating and can confirm accurate temperature grade on the surface of its.

ZnO 나노파우더 바리스터의 C-V 및 주파수 특성 분석 (Analysis of C-V and Frequency Characteristics of the ZnO nano-powder Varistors)

  • 왕민성;정종엽;송민종;박춘배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.183-184
    • /
    • 2005
  • In this study, our varistors based on M.Matsuoke's composition were fabricated with ZnO nano-powder whose sizes were 50nm and 100nm. Electrical properties of ZnO nano-powder varistors were obtained by capacitance-voltage and frequency-real impedance. nano-powder varistors are indicated the change of the interface defects density $N_t$ at the grain boundaries and the donor concentration $N_d$ in the ZnO grains. Frequency analysis was accomplished to understand the equivalent circuit.

  • PDF

Property and ANN Simulating Model of Power Losses of ZnO Varistors

  • Han, Se-Won;He, Jin-Liang;Cho, Han-Goo
    • Journal of Electrical Engineering and information Science
    • /
    • 제2권6호
    • /
    • pp.111-115
    • /
    • 1997
  • ZnO varistors are widely used as surge arresters in power system based on their excellent nonlinearity. The property of power loss of ZnO varistors is related to the thermal stability and their life-spans of ZnO surge arresters. The power losses of ZnO varistors under different temperatures and applied voltages were measured, and the properties of power losses were analyzed. The Artificial Neural Network (ANN) was used to simulate the power losses properties of ZnO varistors which is an adaptive nonlinear dynamic system, and the results calculated by ANN simulating model were in good agreement with the tested ones.

  • PDF