• 제목/요약/키워드: ZnO/Zn redox cycle

검색결과 4건 처리시간 0.02초

열 중량 분석기에서 zinc 입자 크기와 반응 온도에 따른 물 분해 특성 연구 (Particle Size and Reaction Temperature Effects on the Hydrolysis Reaction of Zinc in TGA (Thermo Gravimetric Analyzer))

  • 안승혁;강경수;김창희;배기광;김영호;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제19권4호
    • /
    • pp.305-312
    • /
    • 2008
  • ZnO/Zn redox cycle is the one of the promising thermochemical cycles for hydrogen production via water splitting with high temperature heat source like a concentrated solar energy. This paper reports the particle size effect of Zinc on water splitting behavior. Water splitting reaction experiments were carried out at isothermal conditions of 350 and 400$^{\circ}C$ in TGA (Thermo Gravimetric Analyzer) using four commercial Zinc powders (nano, <10 ${\mu}m$, <150 ${\mu}m$ and $150{\sim}600\;{\mu}m$ particle sizes). Before the experiments, average particle size of Zinc powders was analyzed by PSA (Particle Size Analysis). After the experiments, XRD (X-Ray Diffraction) and SEM (Scanning Electron Microscope) analyses were conducted on the samples. The experimental results showed that particle size had a effect on the conversion of Zinc to ZnO. Zinc conversion was increased, as the particle size decreased. Especially, the nano size particles were aggregated and the particle's morphology changed on the surface during hydrolysis reaction.

열화학적 수소 제조 기술 (Themochemical Cycles for Hydrogen Production from Water)

  • 김종원;박주식;황갑진;배기광
    • 에너지공학
    • /
    • 제15권2호
    • /
    • pp.107-117
    • /
    • 2006
  • 물을 분해하여 수소를 만드는 방법으로서 열화학싸이클을 이용한 방법에 대하여 그동안의 연구 동향에 대하여 살펴보았다. 수소생산이란 관점에서 열화학싸이클이 갖는 장점은 일정한 고온의 열을 얻을 수 있다면, 반응속도의 향상과 아울러 대용량화가 가능하다는 점이다. 안정한 물을 분해하려면 물의 산화/환원이 용이한 매개체를 써서 수소 및 산소를 발생하게 하고 순환시키게 되는데, 매개체가 유독성 물질이라면 이 과정에서 누출이 되지 않도록 하여야 한다. 아직 상용화단계에는 미치지 못하였지만, 일본, 스위스, 이스라엘, 미국, 한국 등에서 집중적으로 연구되고 있는 내용은 IS 싸이클과 ZnO/Zn, $Fe_3O_4/FeO$등과 같은 금속산화물계를 이용한 싸이클들이며, 고온용 및 내부식성 소재와 시스템 분야에서 아직 해결해야할 점이 많다.

ZnO nanostructures for e-paper and field emission display applications

  • Sun, X.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.993-994
    • /
    • 2008
  • Electrochromic (EC) devices are capable of reversibly changing their optical properties upon charge injection and extraction induced by the external voltage. The characteristics of the EC device, such as low power consumption, high coloration efficiency, and memory effects under open circuit status, make them suitable for use in a variety of applications including smart windows and electronic papers. Coloration due to reduction or oxidation of redox chromophores can be used for EC devices (e-paper), but the switching time is slow (second level). Recently, with increasing demand for the low cost, lightweight flat panel display with paper-like readability (electronic paper), an EC display technology based on dye-modified $TiO_2$ nanoparticle electrode was developed. A well known organic dye molecule, viologen, was adsorbed on the surface of a mesoporous $TiO_2$ nanoparticle film to form the EC electrode. On the other hand, ZnO is a wide bandgap II-VI semiconductor which has been applied in many fields such as UV lasers, field effect transistors and transparent conductors. The bandgap of the bulk ZnO is about 3.37 eV, which is close to that of the $TiO_2$ (3.4 eV). As a traditional transparent conductor, ZnO has excellent electron transport properties, even in ZnO nanoparticle films. In the past few years, one-dimension (1D) nanostructures of ZnO have attracted extensive research interest. In particular, 1D ZnO nanowires renders much better electron transportation capability by providing a direct conduction path for electron transport and greatly reducing the number of grain boundaries. These unique advantages make ZnO nanowires a promising matrix electrode for EC dye molecule loading. ZnO nanowires grow vertically from the substrate and form a dense array (Fig. 1). The ZnO nanowires show regular hexagonal cross section and the average diameter of the ZnO nanowires is about 100 nm. The cross-section image of the ZnO nanowires array (Fig. 1) indicates that the length of the ZnO nanowires is about $6\;{\mu}m$. From one on/off cycle of the ZnO EC cell (Fig. 2). We can see that, the switching time of a ZnO nanowire electrode EC cell with an active area of $1\;{\times}\;1\;cm^2$ is 170 ms and 142 ms for coloration and bleaching, respectively. The coloration and bleaching time is faster compared to the $TiO_2$ mesoporous EC devices with both coloration and bleaching time of about 250 ms for a device with an active area of $2.5\;cm^2$. With further optimization, it is possible that the response time can reach ten(s) of millisecond, i.e. capable of displaying video. Fig. 3 shows a prototype with two different transmittance states. It can be seen that good contrast was obtained. The retention was at least a few hours for these prototypes. Being an oxide, ZnO is oxidation resistant, i.e. it is more durable for field emission cathode. ZnO nanotetropods were also applied to realize the first prototype triode field emission device, making use of scattered surface-conduction electrons for field emission (Fig. 4). The device has a high efficiency (field emitted electron to total electron ratio) of about 60%. With this high efficiency, we were able to fabricate some prototype displays (Fig. 5 showing some alphanumerical symbols). ZnO tetrapods have four legs, which guarantees that there is one leg always pointing upward, even using screen printing method to fabricate the cathode.

  • PDF

Hepatoma 세포주에서 H2O2 처리에 의한 Cu/Zn SOD의 발현 (Expression of Cu/Zn SOD according to H2O2 in Hepatoma cell line)

  • 김영민;서원숙
    • 생명과학회지
    • /
    • 제17권2호통권82호
    • /
    • pp.230-234
    • /
    • 2007
  • 생체는 산소를 소비하는 대사 과정 중에 초산화물(superoxide, $O_{2}$), 과산화수소($H_2O_2$), 수산 라디칼(OH)과 같은 다양한 활성산소(reactive oxygen)들을 생성하게 되며, 그 중에서도 hydrogen peroxide ($H_2O_2$)는 biological membrane을 자유롭게 통과하며, 세포내에서 hydroxyl radical 등의 반응성이 큰 활성 산소종(reactive oxygen species, ROS)을 발생시키는 작용을 하는 강력한 산화제이다. 세포를 계대 배양 (5, 15, 25, 35 passage)하여 $H_2O_2$를 농도별(100 ${\mu}M$, 500 ${\mu}M$, 1 mM, 5 mM)로 처리하고, 또한 $H_2O_2$의 처리 시간(30 분, 1 시간)을 변화시킴으로써, Hepatoma 세포주에서 $H_2O_2$ 처리에 의한 Cu/Zn SOD의 발현을 Northern blot을 통하여 다음과 같이 분석하였다. 1)Hepatoma 세포주에서 시간별, 농도별로 산화제를 처리 했을 때 각각의 경우에서 발현양의 차이는 적었지만, 오랜 시간동안 고농도의 산화제에 노출시켰을 때 항산화 능력이 증가한다는 것을 확인할 수 있었다. 2)계대배양을 증가시키는 것은 노화가 진행된다는 것을 의미하므로, 산화제를 처리했을 때 25 passage에서 35 passage 단계에서 항산화 효소의 발현 정도가 급격히 감소되는 것으로 미루어 보아 이 단계에서 노화가 진행되었음을 추측할 수 있었다. 3)동일한 시간과 농도로 처리했을 때 각각의 passage의 발현 level에서 보이는 양상과는 다르게 35 passage에서는 500${\mu}M$이상의 농도를 1 시간동안 노출시켰을 경우에 Cu/Zn SOD가 거의 발현되지 않았으며, 30 분 동안 노출시켰을 때에는 500 ${\mu}M$의 농도까지 방어할 수 있는 능력을 가진 것으로 보인다.