DOI QR코드

DOI QR Code

Expression of Cu/Zn SOD according to H2O2 in Hepatoma cell line

Hepatoma 세포주에서 H2O2 처리에 의한 Cu/Zn SOD의 발현

  • 김영민 (한남대학교 생명나노과학대학 바이오과학부 생명과학전공) ;
  • 서원숙 (한국표준과학연구원)
  • Published : 2007.02.28

Abstract

Oxygen is required for many important aerobic cellular reactions, it may undergo electrontransfer reactions, which generate highly reactive membrane-toxic intermediates (reactive oxygen species, ROS), such as hydrogen peroxide, singlet oxygen, superoxide radical, hydroxyl radical, hydroperoxyl radical, hydroxy ion. Various mechanisms are available to protect cells against damage caused by oxidative free radicals, including scavenging enzyme systems such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This antioxidant defense system is a very complex and finely tuned system consisting of enzymes capable of detoxifying oxygen radicals as well as low molecular weight antioxidants. In addition, repair and turnover processes help to minimize subcellular damage resulting from free radical attack. $H_2O_2$,one of the major ROS, is produced at a high rate as a product of normal aerobic metabolism. The primary cellular enzymatic defense systems against $H_2O_2$ are the glutathione redox cycle and catalase. From Northern blot analysis of total RNAs from cultured cell with $H_2O_2$ treatment, various results were obtained. Expression of Cu/Zn SOD decreased when cell passage increased, but the level of the Cu/Zn SOD was scarcely expressed in 35 passage.

생체는 산소를 소비하는 대사 과정 중에 초산화물(superoxide, $O_{2}$), 과산화수소($H_2O_2$), 수산 라디칼(OH)과 같은 다양한 활성산소(reactive oxygen)들을 생성하게 되며, 그 중에서도 hydrogen peroxide ($H_2O_2$)는 biological membrane을 자유롭게 통과하며, 세포내에서 hydroxyl radical 등의 반응성이 큰 활성 산소종(reactive oxygen species, ROS)을 발생시키는 작용을 하는 강력한 산화제이다. 세포를 계대 배양 (5, 15, 25, 35 passage)하여 $H_2O_2$를 농도별(100 ${\mu}M$, 500 ${\mu}M$, 1 mM, 5 mM)로 처리하고, 또한 $H_2O_2$의 처리 시간(30 분, 1 시간)을 변화시킴으로써, Hepatoma 세포주에서 $H_2O_2$ 처리에 의한 Cu/Zn SOD의 발현을 Northern blot을 통하여 다음과 같이 분석하였다. 1)Hepatoma 세포주에서 시간별, 농도별로 산화제를 처리 했을 때 각각의 경우에서 발현양의 차이는 적었지만, 오랜 시간동안 고농도의 산화제에 노출시켰을 때 항산화 능력이 증가한다는 것을 확인할 수 있었다. 2)계대배양을 증가시키는 것은 노화가 진행된다는 것을 의미하므로, 산화제를 처리했을 때 25 passage에서 35 passage 단계에서 항산화 효소의 발현 정도가 급격히 감소되는 것으로 미루어 보아 이 단계에서 노화가 진행되었음을 추측할 수 있었다. 3)동일한 시간과 농도로 처리했을 때 각각의 passage의 발현 level에서 보이는 양상과는 다르게 35 passage에서는 500${\mu}M$이상의 농도를 1 시간동안 노출시켰을 경우에 Cu/Zn SOD가 거의 발현되지 않았으며, 30 분 동안 노출시켰을 때에는 500 ${\mu}M$의 농도까지 방어할 수 있는 능력을 가진 것으로 보인다.

Keywords

References

  1. Allen, R. G. and M. Tresini. 2000. Oxidative stress and gene regulation. Free. Radie. Biol. Med. 28, 463-499 https://doi.org/10.1016/S0891-5849(99)00242-7
  2. Ames, B. N. 1989. Endogenous DNA damage as related to cancer and aging. Mutat. Res. 214, 41-46 https://doi.org/10.1016/0027-5107(89)90196-6
  3. Diguiseppi, J. and I. Fridovich. 1984. The toxicity of molecular oxygen. CRC Crit. Rev. Toxicol. 12, 315-342 https://doi.org/10.3109/10408448409044213
  4. Finkel, T. 2003. Oxidant signals and oxidative stress. Cell Biol. 15, 247-254
  5. Gorman, A. M., A. McGowan, C. O'Neill and T. Cotter. 1996. Oxidative stress and apoptosis in neurodegeneration. J. Neurosci. 139, 45-52
  6. Halliwell, B. and J. M. C. Gutteridge, 1991. Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts. Arch. Biochem. Biophys. 246, 501-504 https://doi.org/10.1016/0003-9861(86)90305-X
  7. Harman, D. 1981. The aging process, Proc. Natl. Acad. Sci. U.S.A. 78, 7124-7128 https://doi.org/10.1073/pnas.78.11.7124
  8. Kazzaz, J. A., J. Xu, T. A. Palaia, L. Mantell, A. M. Fein and S. Horowitz. 1996. Cellular oxygen Toxicity. J. Biol. Chem. 25, 15182-15186
  9. Mattson, M. P. and Y. Goodman. 1995. Different amyloidogenic peptides share a similar mechanism of neurotoxicity involving reactive oxygen species and calcium. Brain Res. 676, 219-224 https://doi.org/10.1016/0006-8993(95)00148-J
  10. Prosenjit, S, S. Mukherjee, G. Bhaumik, P. Das, S. Ganguly, N. Choudhury and S. Raha. 2003. Enhancement of catalase activity by repetitive low-grade $H_2O_2$ exposures protects fibroblasts from subsequent stress-induced apoptosis. Mutat. Res. 529, 87-94 https://doi.org/10.1016/S0027-5107(03)00106-4
  11. Shinyashiki, S., Y. Kumagai, H. T. Shino, J. Nagafune, N. Takasawa, J. Suzuki, I. Matsuzaki, S. Satoh, M. Sagai and N. Shimojo. 1996. Selective inhibition of the mouse brain Mn-SOD by methylmercury. Environ. Toxicol. Pharmacol. 2, 359-366 https://doi.org/10.1016/S1382-6689(96)00070-1
  12. Shull, S., N. H. Heintz, M. Periasamy, M. Manohar, Y. M. W. Janssen, J. P. Marsh and B. T. Mossman. 1991. Differential regulation of antioxidant enzymes in response to oxidants. J. Biol.Chem. 266, 24398-24403
  13. Stadtman, E. R. and Oliver, C. N. 1991. Metal-catalyzed oxidation of proteins physiological consequences. J. Biol. Chem. 266, 2005-2008
  14. Teixeira, H. D. and Meneghini, R. 1996. Chinese hamster fibroblasts overexpressing Cu/Zn-superoxide dismutase undergo a global reduction in antioxidant and an increasing sensitivity of DNA to oxidative damage. Biochem. J. 315, 821-825 https://doi.org/10.1042/bj3150821
  15. Urso, M. L. and P. M. Clarkson. 2003. Oxidative stress, exercise, and antioxidant supplementation. Toxicol. 189, 41-54 https://doi.org/10.1016/S0300-483X(03)00151-3