• Title/Summary/Keyword: ZnO/TiO2

Search Result 527, Processing Time 0.026 seconds

Characterization of ZnO/TiO2 Nanocomposites Prepared via the Sol-Gel Method

  • Hellen, Nalumaga;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.140-144
    • /
    • 2018
  • $ZnO/TiO_2$ nanocomposites were synthesized via a modified sol-gel technique by incorporating 30 and 70 wt% $TiO_2$ nanopowder into a ZnO sol-gel matrix. Zinc acetate dihydrate was used as the ZnO precursor and de-ionized water as the solvent, while titanium oxysulfate was employed for the synthesis of $TiO_2$ nanopowder. The synthesized $ZnO/TiO_2$ nanocomposites were characterized by x-ray diffraction, UV-vis spectroscopy, scanning electron microscopy, and transmission electron microscopy. The $ZnO/TiO_2$ nanocomposites showed both the ZnO (wurtzite) and $TiO_2$ (anatase) phases. The average ZnO crystallite size of the $ZnO/TiO_2$ nanocomposites was found to be about 26.3 nm. The TEM results confirmed that spherical $TiO_2$ particles were embedded in the ZnO matrix. $TiO_2$ particles attached onto the rod-like ZnO particles were also observed. The $ZnO/TiO_2$ nanocomposites exhibited optical absorption properties superior to those of pure ZnO and $TiO_2$.

Photocatalytic Degradation of a Congo red Using ZnO/rutile-$TiO_2$, ZnO, rutile-$TiO_2$ and CdS (ZnO/rutile-$TiO_2$, ZnO, rutile-$TiO_2$, CdS를 이용한 Congo red의 광 촉매 분해반응)

  • Kim, Chang Suk;Ryu, Hae-Ill
    • Analytical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.259-265
    • /
    • 2001
  • Photocatalytic degradation of Congo red was performed using various semiconductors as ZnO, CdS, rutile-$TiO_2$ or mixed rutile-$TiO_2$/ZnO. The change of degradation of the dye was investigated by UV-visible spectrophotometric method. The photocatalytic action of CdS was greater than ZnO and rutile-$TiO_2$ in account of low band gap energy of CdS. The rate of photocatalytic degradation reaction increased drastically in according to increasing ratio of ZnO on mixed rutile-$TiO_2$/ZnO. These photocatalytic effect of rutile-$TiO_2$ was suppressed by more stable rutile-$TiO_2$, doping the hydrolysis product with $Zn^{2+}$ prior to calcination onto the rutile-$TiO_2$ surface.

  • PDF

The effect of Zn2TiO4 on willemite crystalline glaze (Zn2TiO4가 아연결정유약에 미치는 효과)

  • Lee, Chi-Youn;Lee, Hyun-Soo;Shin, Kyung-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • $Zn_2TiO_4$, using an anatase form of $TiO_2$ on zinc crystalline glaze, was shown as effective nuclear agent. Thus the effects on glaze were studied with synthesized $Zn_2TiO_4$ at low temperature. First, the chromophore elements were employed in synthesized $Zn_2TiO_4$ then add them in the zinc crystalline glaze. Crystal creation and development of color by $Zn_2TiO_4$ addition on the zinc crystalline glaze were more effective. Addition of $Zn_2TiO_4$, which is developed in low range temperature, is effected as zinc crystalline nuclear in the willemite glaze. When 5 wt% of synthesized $Zn_2TiO_4$ was added to the willemite glaze, nuclear creation increases and steadily retains. Therefore addition of respectively doped $Zn_2TiO_4$ with CoO, NiO, and CuO would increase doped effects in the glaze, various color willemite crystal were obtained.

Formation and Color of the Spinel Solid-Solution in $ZnO-Fe_2O_3-TiO_2-SnO_2$ System ($ZnO-Fe_2O_3-TiO_2-SnO_2$계 Spinel 안료 고용체의 생성과 발색)

  • 박철원;이진성;이웅재
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.2
    • /
    • pp.213-219
    • /
    • 1994
  • The formations of spinel and colors of ZnO-Fe2O3-TiO2-SnO2 system have been researched on the basis of ZnO-Fe2O3 system. Specimens were prepared by substituting Fe3+, with Ti4+ or Sn4+ when mole ratios between Fe3+ and Ti4+ or between Fe3+ and Sn4+ were 0.2 mole. The reflectance measurement and X-ray diffraction analysis of the formation of spinel and the colors of there specimens were carried out. ZnO-Fe2O3 system in which Fe2O3 was substituted with SnO2 and TiO2 was formed the spinel structure of 2ZnO.TiO2, 2ZnO.SnO2, ZnO.Fe2O3. The stable stains which were colored with yellow and brown could be manufactured.

  • PDF

Transparent Electrode Performance of TiO2/ZnS/Ag/ZnS/TiO2 Multi-Layer for PDP Filter (TiO2/ZnS/Ag/ZnS/TiO2 다층막의 PDP 필터용 전극 특성)

  • Oh, Won-Seok;Lee, Seo-Hee;Jang, Gun-Eik;Park, Seong-Wan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.681-684
    • /
    • 2010
  • The $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ multilayered structure for the transparent electrodes in plasma display panel was designed by essential macleod program (EMP) and the multilayered film was deposited on a glass substrate by direct-current (DC)/radio-frequency (RF) magnetron sputtering system. During film deposition process, the Ag layer in $TiO_2$/Ag/$TiO_2$ structure became oxidized and the filter characteristic was degraded easily. In this study, ZnS layer was adopted as a diffusion blocking layer between $TiO_2$ and Ag to prevent the oxidation of Ag layer efficiently in $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ structure. Based on the AES depth profiling analysis, the Ag layer was effectively protected by the ZnS layer as compared with the $TiO_2$/Ag/$TiO_2$ multilayered films without ZnS as an antioxidant layer. The 3 times stacked $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ films have low sheet resistance of $1.22{\Omega}/{\square}$ and luminous transmittance was as high as 62% in the visible ranges.

A Study on the Effects of $TiO_2$ and $Al(OH)_3$ for ZnO Ceramic Varistor (ZnO Ceramic Varistor에 미치는 $TiO_2$$Al(OH)_3$의 영향)

  • 안영필;김복희
    • Journal of the Korean Ceramic Society
    • /
    • v.19 no.4
    • /
    • pp.287-292
    • /
    • 1982
  • Nonohmic properties of ZnO ceramics with various small amounts of additives were studied in relation to experimental methods, additive contant and sintaring temperature. The kinds of additives used to following chemicals were basic additives ($0.5Bi_2O_3$, $0.3BaCO_3$, $0.5MnCO_3$, $0.5Cr_2O_3$, $0.1KNO_3$), $TiO_2$ and $Al(OH)_3$. Expecially, this study has focused on the effectsof $TiO_2$ and $Al(OH)_3$ in ZnO ceramics with the basic additives. SEM studies indicated that the addition of TiO2 promoted grain growth but retarded grain growth with the addition of $Al(OH)_3$. Also, in the case of calcination of ZnO with $TiO_2$ and ZnO with $Al(OH)_3$ previously, grain size of ZnO with $TiO_2$ was larger and that of ZnO with Al(OH)3 was smaller in comparison to the case with out calcination. From the viewpoint of nonohmic exponent and nonohimic resistance, electrical characteristics of ZnO, $TiO_2$ and the basic additives was more effective than that of ZnO, $Al(OH)_3$ and the basic additives. Nonohmic exponent and nonohmic resistance of ZnO, $TiO_2$ and the basic additives was 11-13 and 40-65 respectively.

  • PDF

Effect of TiO Addition on Morphologies and Luminescence Properties of ZnO Crystals Fabricated by Vapor Transport Method (기상이동법에 의해 제조된 ZnO 결정의 형상 및 발광 특성에 미치는 TiO 첨가의 영향)

  • Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.28 no.10
    • /
    • pp.590-594
    • /
    • 2018
  • ZnO micro/nanocrystals are formed by a vapor transport method. Mixtures of ZnO and TiO powders are used as the source materials. The TiO powder acts as a reducing agent to reduce the ZnO to Zn and plays an important role in the formation of ZnO micro/nanocrystals. The vapor transport process is carried out in air at atmospheric pressure. When the weight ratios of TiO to ZnO in the source material are lower than 1:2, no ZnO micro/nanocrystals are formed. However, when the ratios of TiO to ZnO in the source material are greater than 1:1, the ZnO crystals with one-dimensional wire morphology are formed. In the room temperature cathodoluminescence spectra of all the products, a strong ultraviolet emission centered at 380 nm is observed. As the ratio of TiO to ZnO in the source material increases from 1:2 to 1:1, the intensity ratio of ultraviolet to visible emission increases, suggesting that the crystallinity of the ZnO crystals is improved. Only the ultraviolet emission is observed for the ZnO crystals prepared using the source material with a TiO/ZnO ratio of 2:1.

Application of Zn2TiO4 for nucleation and control of willemite crystalline glaze (아연결정유약의 결정 생성 및 제어를 위한 Zn2TiO4 활용 연구)

  • Lee, Hyun-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.154-161
    • /
    • 2017
  • $Zn_2TiO_4$, which is a progenitor of zinc crystallization, plays a significant role in controlling the crystallization of willemite ($Zn_2SiO_4$) in forming glaze at low temperatures. Thus, $Zn_2TiO_4$ was used to formulate stable willemite and to gain structural control. When synthesized 15 wt% of $Zn_2TiO_4$ is added to engobe and then applied, it can manipulate its crystallization and location. Additionally, when colorant is added to $Zn_2TiO_4$ and then applied to engobe, the mixture's colorant effect can be shown at crystallization. Certain characteristics of synthesized $Zn_2TiO_4$ enable various engobes to be applied to clay bodies. With a single glazing, the crystallization, location, and color of the crystals can be discretionarily regulated.

The Changes of CO Gas Sensing Properties of ZnO and $SnO_2$ with Addition $TiO_2$ ($TiO_2$첨가에 의한 ZnO와 $SnO_2$의 일산화탄소 감응특성 변화)

  • Kim, Tae-Won;Choi, U-Sung;Jun, Seon-Taek
    • Korean Journal of Materials Research
    • /
    • v.8 no.4
    • /
    • pp.312-316
    • /
    • 1998
  • ZnO- TiO$_2$, and Sn0$_2$ - Ti0$_2$ ceramic composites doped with TiO$_2$ were prepared and their electrical and 1000ppm CO gas sensing properties were investigated. The phases of samples were analyzed by XRD, and the microsturctures of the fractured surface of samples were observed by SEM. A carbon monoxide gas sensitivity was de¬fined as the ratio of the resistance in dry air atmosphere(R$drt air$) to the resistance in 1000ppm CO gas atmosphere(R$_co$) The CO gas sensitivity of Smol% Ti0$_2$-added ZnO decreased about 1.7 times compared to that of pure ZnO. On the other hand, the maximum CO gas sensitivity of Ti0$_2$-added SnO$_2$ increased about 2.5 times compared to that of pure SnO$_2$. Therefore, the CO gas sensitivies of SnO$_2$-TiO$_2$ composite were better than those of ZnO- Ti0$_2$ and the temper¬ature range showing the maximum sensitivity for Sn0$_2$-TiO$_2$ composite was lower than that for ZnO- Ti0$_2$.

  • PDF

Preparation of ZnO@TiO2 nano coreshell structure by the polymerized complex and sol-gel method (착체중합법과 sol-gel법에 의한 ZnO@TiO2 나노 코아쉘 구조의 제조)

  • Lim, Chang Sung
    • Analytical Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2008
  • Nano core shell structures of $TiO_2$ particles coated on surface of ZnO nanoparticles were prepared by the polymerized complex and sol-gel method. The average particle size of ZnO by the polymerized complex method showed 100 nm and the average particle size of $TiO_2$ by the sol-gel method showed below 10 nm. The average particle size of $ZnO@TiO_2$ nano core shell struture represented about 150 nm. The agglomeration between the ZnO particles using the polymerized complex method was highly controlled by the uniform absorption of $TiO_2$ colloid on the spherical ZnO surfaces. The driving force of heterogeneous bonding between ZnO and $TiO_2$ was induced by the Coulomb force. The ZnO and $TiO_2$ particles electrified with + and - charges, respectively, resulted in strong bonding by the difference of iso-electric point (IEP) when they laid neutrality pH area, depending on the heterogeneous surface electron electrified by the different zeta potential on the pH values.