Photocatalytic Degradation of a Congo red Using ZnO/rutile-$TiO_2$, ZnO, rutile-$TiO_2$ and CdS

ZnO/rutile-$TiO_2$, ZnO, rutile-$TiO_2$, CdS를 이용한 Congo red의 광 촉매 분해반응

  • Kim, Chang Suk (School of Science Education, Chungbuk National University) ;
  • Ryu, Hae-Ill (Department of Chemistry Education, Gongju National University)
  • 김창석 (충북대학교 사범대학 과학교육학부) ;
  • 류해일 (공주대학교 사범대학 과학교육과)
  • Received : 2001.02.23
  • Published : 2001.06.25

Abstract

Photocatalytic degradation of Congo red was performed using various semiconductors as ZnO, CdS, rutile-$TiO_2$ or mixed rutile-$TiO_2$/ZnO. The change of degradation of the dye was investigated by UV-visible spectrophotometric method. The photocatalytic action of CdS was greater than ZnO and rutile-$TiO_2$ in account of low band gap energy of CdS. The rate of photocatalytic degradation reaction increased drastically in according to increasing ratio of ZnO on mixed rutile-$TiO_2$/ZnO. These photocatalytic effect of rutile-$TiO_2$ was suppressed by more stable rutile-$TiO_2$, doping the hydrolysis product with $Zn^{2+}$ prior to calcination onto the rutile-$TiO_2$ surface.

ZnO, CdS, rutile-$TiO_2$ 및 혼합 rutile-$TiO_2$/ZnO와 같은 여러 반도체를 이용하여 Congo Red를 광 촉매 분해시켰다. 연구 결과 ZnO, CdS, rutile-$TiO_2$ 중에서는 CdS의 광 촉매 효과가 제일 컸는데 이것은 CdS가 제일 작은 band gap 에너지를 가지고 있기 때문이었다. 또한 혼합 촉매에서는 ZnO의 함량이 rutile-$TiO_2$에 비하여 상대적으로 높을수록 분해 반응을 촉진하였다. 이것은 $Zn^{2+}$ 가수분해 생성물이 구조적으로 안정한 화합물인 rutile-$TiO_2$의 표면을 덮음으로서 자외선 흡수를 차단하기 때문에 라디칼 생성을 저해하기 때문이었다.

Keywords

References

  1. J. Chem. (Ed.) v.70 no.10 R.F.P. Nogueira;W.F. Jardin
  2. J. Chem. (Ed.) v.75 no.6 J.C. Yu;Y.L. Chan;P. Krause
  3. Tio₂ Photocatalytic Purification and Treatment of Water and Air D.F. Ollis;H.(Eds.);El-Akahi
  4. Environ. Sci. Technol v.27 G. Mills;M.R. Hoffmann
  5. Environ. Sci. Technol v.25 D.F. Ollis;E. Pelizzetti;N. Serpone
  6. Environ. Sci. Technol v.25 C. Kormann;D.W. Bahnemann;M.R. Hoffmann
  7. J. Chem. Soc. Faraday Trans II v.82 J.R. Darwent;A. Lepre
  8. J. Am. Chem. Soc. v.109 L. Spanhel;H. Weller;A. Henglein
  9. J. Chem. Ed. v.72 no.4 K.D. Giglio;D.B. Green;B. Hutchinson
  10. J. Chem. Soc. Chem. Commun N. Serpone;E. Borgarello;M. Gratzel
  11. Chemtech v.23 W.A. Zeltner;C.G. Jr Hill;M.A. Anderson
  12. Environ. Sci. Technol v.30 S. Richardson;A.D. Jr. Thruston;T.W. Collette
  13. J. Chem. Ed. v.76 no.12 J.A. Bumpus;J. Tricker;K. Andrzejewski;H. Rhoads;M. Tatako
  14. Hazard, Waste Hazard Mater v.10 R. Venkatadri;R.W. Peters
  15. Catal. Today v.17 J.M. Herrmann;C. Gullard;P. Pichat
  16. Chem. Rev v.95 M.R. Hoffmann;S.T. Martin;W. Choi;D.W. Bahnemann
  17. Chem. Rev. v.93 M.A. Fox;M.T. Dulay
  18. Environ. Sci. Technol v.30 A. Haarstrick;O.M. Kut;E. Heinzle
  19. Anal. Sci & Tech v.13 no.5 C.S. Kim;I.W. Choi
  20. German Patent 28753 P. Bottiger
  21. Chem. Eng. News v.76 S. Borman
  22. J. Mol. Struct v.408 J. Sajid;A. Elhaddaoui;S. Turrell
  23. Advanced Inorganic Chemistry (5th ed) F.A. Cotton;G. Wilkinson
  24. Inorganic Chemistry (3rd ed) D.F. Shriver;P.W. Atkins
  25. CRC Handbook of Chemistry and Physics (70th ed) R.C. Weast
  26. Industrial Inorganic Chemistry W. Buchner;R. Schliebs;G. Winter;K.H. Buchel
  27. Environ. Sci. Technol v.29 K. Vinodgopal;P.V. Kamat