• Title/Summary/Keyword: ZnBO

Search Result 265, Processing Time 0.031 seconds

Influence of Mg composition on growth and characteristic of MgZnO/ZnO heterostructure (MgZnO/ZnO 이종접합구조의 특성과 성장에 Mg 합성이 미치는 영향)

  • Kim, Young-Yi;Kong, Bo-Hyun;Kim, Dong-Chan;An, Cheol-Hyeon;Han, Won-Seok;Choe, Mi-Gyeong;Jo, Hyeong-Gyun;Moon, Jin-Young;Lee, Ho-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.73-73
    • /
    • 2008
  • 일반적으로 청색 및 자외선 발광다이오드, 레이저 다이오드, UV 감지기 (detector)소자 등의 기술적인 중요성은 ZnO를 기반으로 하는 산화물 반도체와 함께 와이드 밴드갭 반도체 연구가 활발히 진행되고 있다. ZnO의 경우 밴드갭 엔지니어링을 위해 일반적으로 Cd과 Mg을 사용하고 있으며 특히, ZnO에 Mg을 첨가하여 MgZnO 화합물을 첨가할 경우 밴드갭을 3.3eV~7.8eV까지 증가 시킬 수 있고, MgZnO/ZnO 초격자 구조를 이용할 경우 자유 엑시톤 결합에너지를 100meV 이상까지 증가시킬 수 있는 장점을 가지고 있다. 그러나 MgO는 결정구조가 rocksalt 구조를 가지는 입방정 구조이기 때문에 Hexagonal 구조를 가진 ZnO에 첨가될 경우 고용도에 큰 제한을 가지게 된다. 이와 같은 문제점으로 인하여 밴드갭 엔지니어링 기술은 여전히 해결되지 않은 문제점으로 남아 있다. 본 실험에서는 RF 마그네트론 스퍼터링 방법으로 사파이어 기판위에 MgZnO/ZnO 박막을 co-sputtering 시켰다. Targer은 ZnO(99.999%) 와 MgO (99.999%) target을 사용하였고, 스퍼터링 가스는 아르곤과 산소가스를 2:1 비율로 혼합시켜 성장하였다. MgZnO 박막을 성장하기 전 ZnO 층을 ~500 두께로 성장 시켰다. RF-power는 ZnO target을 고정 시키고, MgO targe power를 변화시켜 Mg 농도를 조절 하였다. 실험 결과 MgO target power 가 증가 할수록 반치폭이 증가하고, c-plane을 따라 격자 상수가 감소하는 것을 확인 할 수 있고, UV emission peak intensity가 감소며 단파장쪽으로 blue shift 하고, activation energy 가 증가하는 것을 관찰 할 수 있었다.

  • PDF

The Study of Hyperfine Fields for Co0.9Zn0.1Cr1.9857Fe0.02O4 (Co0.9Zn0.1Cr1.9857Fe0.02O4 물질의 초미세자기장 연구)

  • Choi, Kang-Ryong;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.1
    • /
    • pp.39-42
    • /
    • 2008
  • [ $AB_2X_4$ ](A, B=Transition Metal, X=O, S, Se) are cubic spinel normal ferrimagnets, in which M ions occupy the tetrahedral sites and Cr ions occupy the octahedral sites. Recently, they have been investigated for behaviour of B site ions and A-B interaction. Polycrystalline $[Co_{0.9}Zn_{0.1}]_A[Cr_{1.98}{^{57}Fe_{0.02}}]_BO_4$ compound was prepared by wet-chemical process. The ferrimagnetic transition was observed around 90K. $M\"{o}ssbauer$ absorption spectra at 4.2K show that the well-developed two sextets are superposed with small difference in hyperfine fields($H_{hf}$). The hyperfine fields of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$ and $Co_{0.9}Zn_{0.1}Cr_{1.98}{^{57}Fe_{0.02}}O_4$ were determined to be 488, 478 kOe and 486, 468 kOe, respectively. We notice that the one of the magnetic hyperfine field values changes with Zn ion substitution. These results suggest the incommensurate states and spin-reorientation temperature($T_S=18K$) changes with Zn ions substitution below spin-reorientation temperature($T_S=28K$) of $CoCr_{1.98}{^{57}Fe_{0.02}}O_4$

Characterization of ZnO/MgZnO heterojunction grown by thermal evaporation (열기상증착법으로 성장된 ZnO/MgZnO 이종접합 나노막대의 물성분석)

  • Kong, Bo-Hyun;Jun, Sang-Ouk;Kim, Yung-Yi;Kim, Dong-Chan;Cho, Hyung-Koun;Kim, Hong-Seung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.11-11
    • /
    • 2006
  • ZnO는 넓은 밴드갭(3.37eV)과 큰 액시톤(exciton) 결합에너지(60meV)를 가지는 II-VI족 화합물 반도체이다[1]. 이와같은 특성은 상온에서도 높은 재결합 효율이 기대되는 엑시톤 전이가 가능하여 자발적인 발광특성 및 레이저 발진을 위한 낮은 임계전압을 가져 일광효율이 큰 장점이 있다. 최근에는 ZnO의 전기적, 광학적, 자기적 특성을 높이기 위해 doping에 대한 연구가 많이 보고 되고 있다. 이중 ZnO내에 Mg을 doping하게 되면 Mg 조성에 따라 밴드갭이 3.3~7.7eV까지 변하게 된다. 그러나 이원계 상평형도에 따라 ZnO내에 고용될 수 있는 MgO의 고용도는 4at% 이하이다. 이는 ZnO는 Wurtzite 구조이고, MgO는 rocksalt 구조로 각각 결정구조가 다르기 때문이다. 본 연구는 열기상증착방법(thermal evaporation)으로 ZnO 템플레이트를 이용하여 MgZnO 나노막대를 합성하였고, Zn와 Mg의 서로 다른 녹는점을 이용해 2-step으로 성장을 하였다. 합성은 수평로를 사용하였으며, 반응온도 550, $700^{\circ}C$로 2-step으로 하였으며, 소스로 사용된 Zn(99.99%)과 Mg(99.99%) 분말을 산소를 직접 반응시켜 합성하였다. Ar 가스와 O2 가스를 각각 운반가스와 반응가스로 사용하였다. ZnO 템플레이트 위에 성장시킨 1차원 MgZnO 나노구조의 형태 및 구조적 특성을 FESEM과 TEM으로 분석하였다. 그리고 결정학적 특성은 XRD를 이용해 분석하였다.

  • PDF

Effect of $TiO_2$ in the Lead-Zinc-Borosilicate Solder Glass ($TiO_2$ 의 첨가가 Lead-Zinc-Borosilicate 봉착 유리에 미치는 영향)

  • 채수철;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.21 no.4
    • /
    • pp.349-354
    • /
    • 1984
  • The purpose of present study is to find the structure crystallization mechanism and physical properties in $TiO_2$ containing lead zinc borosilicate glass system. The experiments such as differential thermal analysis infrared spectral analysis. X-ray diffraction analysis and thermal expansion measurements have been done. Differential thermal analysis of coarse and fine glass powder showed bulk nucleating mechanism for high $TiO_2$ containing glasses and surface nucleation mechanism for low $TiO_2$ containing glasses. The prepared glasses crystallized to crystalline mixture of PbO.2ZnO. $B_2O_3$ .4PbO.2ZnO.$5B_2O_3$and 2PbO.ZnO.$B_2O_3$ when heat-treated in the range of 480 and 51$0^{\circ}C$ and crystallized to PbTiO3 when heat-treated at $600^{\circ}C$. Obtained crystalline phase of $PbTiO_3$ in glass matrix strongly affects to thermal expansion coefficient and the value of crystallized glass varied 68.0 to $107.1{\times}10-7$/$^{\circ}C$ depending on the amount of $TiO_2$added. Infrared spectral analysis showed that [$BO_3$] triangle and [$BO_3$] tetrahedral units were coexisted in the glass with high content of PbO.

  • PDF

Effect of the hetero-epitaxial ZnO buffer layer for the formation of As-doped ZnO thin films (Hetero-epitaxial ZnO 버퍼층이 As-doped ZnO 박막의 증착조건에 미치는 영향)

  • Lee, Hong-Chan;Choi, Won-Kook;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.216-221
    • /
    • 2006
  • ZnO thin films prepared by PLD method exhibit an excellent optical property, but may have some problems such as incomplete surface roughness and crystallinity. In this study, undoped ZnO buffer layers were deposited on (0001) sapphire substrates by ultra high vacuum pulse laser deposition (UHV-PLD) and molecular beam epitaxy (MBE) methods, respectively. After post annealing of ZnO buffer layer, undoped ZnO thin films were deposited under different oxygen pressure ($35{\sim}350$ mtorr) conditions. The Arsenic-doped (1, 3 wt%) ZnO thin layers were deposited on the buffer layer of undoped ZnO by UHV-PLD method. The optical property of the ZnO thin films was analyzed by photoluminescence (PL) measurement. The ${\theta}-2{\theta}$ XRD analysis exhibited a strong (002)-peak, which indicates c-axis preferred orientation. Field emission-scanning electron microscope (FE-SEM) revealed that microstructures of the ZnO thin films were varied by oxygen partial pressure, Arsenic doping concentration, and deposition method of the undoped ZnO buffer layer. The denser and smoother films were obtained when employing MBE-buffer layer under lower oxygen partial pressure. It was also found that higher Arsenic concentration gave the enhanced growing of columnar structure of the ZnO thin films.

Study on the Optical Characteristics of the Green Phosphor for PDP Application (PDP용 녹색 형광체의 광 특성 개선에 관한 연구)

  • Han, Bo Yong;Yoo, Jae Soo
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.150-156
    • /
    • 2009
  • Plasma Display Panels(PDPs) require to have improved luminous efficiency, low manufacturing cost, and high image quality to compete with other flat display devices such as Liquid Crystal Displays(LCDs) and organic light-emitting diodes(OLEDs). In addition, the diversity of product line-up may be needed for high market share. In this paper, the optical characteristics of typical green phosphor for PDP application are reviewed and the problem-based solution will be proposed. We also shortly describe the principle of 3D-PDPs which are promising. Then, the requirement of green phosphor for 3D-PDP application is summarized and research achievement, as of now, is described. The typical problems of $Zn_2SiO_4:Mn$ phosphor, which is the most well-known, are the negatively charged surface property and the long decay time, which leads to unstable discharge in green cell and afterimage. These problems were solved by coating the phosphor surface with metallic oxide. It was found that $Al_2O_3$ would be the best material for $Zn_2SiO_4:Mn$ phosphor. It gives longevity as well as low operating voltage due to the charging effect in green cells. Also, new phosphors, $(Y,\;Gd)Al_3(BO_3)_4:Tb$ and $(Mg,\;Zn)Al_2O_4:Mn$ phosphor are proposed for increasing the luminance and reducing the decay time, which are capable to apply for 3D-PDP application.

RF-magnetron sputtering 방법으로 성장시킨 Ga-doped ZnO 박막의 성장 온도 변화에 따른 영향

  • Kim, Yeong-Lee;U, Chang-Ho;An, Cheol-Hyeon;Bae, Yeong-Suk;Gong, Bo-Hyeon;Kim, Dong-Chan;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.9-9
    • /
    • 2009
  • 1 wt % Ga-dope ZnO (ZnO:Ga) thin films with n-type semiconducting behavior were grown on c-sapphire substrates by radio frequency magnetron sputtering at various growth temperatures. The room temperature grown ZnO:Ga film showed the faint preferred orientation behavior along the c-axis with small domain size and high density of stacking faults, despite limited surface diffusion of the deposited atoms. The increase in the growth temperature in the range between $300\sim550^{\circ}C$ led to the granular shape of epitaxial ZnO:Ga films due to not enough thermal energy and large lattice mismatch. The growth temperature above $550^{\circ}C$ induced the quite flat surface and the simultaneous improvement of electrical carrier concentration and carrier mobility, $6.3\;\times\;10^{18}/cm^3$ and $27\;cm^2/Vs$, respectively. In addition, the increase in the grain size and the decrease in the dislocation density were observed in the high temperature grown films. The low-temperature photoluminescence of the ZnO:Ga films grown below $450^{\circ}C$ showed the redshift of deep-level emission, which was due to the transition from $Zn_j$ to $O_i$ level.

  • PDF

The Aging Characteristics of Mg-6 wt.% Al-1 wt.% Zn Alloy Prepared by Gas Atomization (가스분사법으로 제조된 Mg-6 wt.% Al-1 wt.% Zn 합금의 시효특성)

  • Lee, Du-Hyung;Kim, Bo-Sik;Chang, Si-Young
    • Journal of Powder Materials
    • /
    • v.16 no.4
    • /
    • pp.275-279
    • /
    • 2009
  • The aging characteristics of gas atomized Mg-6 wt.% Al-1 wt.% Zn alloy were investigated and compared to those of cast Mg-6 wt.% Al alloy. The gas atomized Mg-6 wt.% Al-1wt.% Zn alloy powders had spherical morphology between 1 and 100 $\mu m$ in diameter. After compaction under the pressure of 700 MPa at $320^{\circ}C$ for 10 min, the Mg-6 wt.% Al-1 wt.% Zn alloy showed a grain size of approximately 40 $\mu m$ which is smaller than that of the cast Mg-6 wt.% Al alloy, and a relative compact density of approximately 93%. After ageing, the Mg-6 wt.% Al-1 wt.% Zn alloy showed much faster peak hardness than cast Mg-6 wt.% Al alloy. The Mg-6 wt.% Al-1 wt.% Zn alloy showed the new fine precipitations with ageing time, while the cast Mg-6 wt.% Al alloy was almost similar morphology.

Trimethylamine Sensing Characteristics of Molybdenum doped ZnO Hollow Nanofibers Prepared by Electrospinning (전기방사방법에 의해 합성된 ZnO 중공 나노섬유의 trimethylamine 가스 감응 특성)

  • Kim, Bo-Young;Yoon, Ji-Wook;Lee, Chul-Soon;Park, Joon-Shik;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.419-422
    • /
    • 2015
  • Pure and Mo-doped ZnO hollow nanofibers were prepared by single capillary electrospinning and their gas sensing characteristics toward 5 ppm ethanol, trimethylamine (TMA), CO and $H_2$ were investigated. The gas responses and responding kinetics were dependent upon sensing temperature and Mo doping. Mo-doped ZnO hollow nanofibers showed high response to 5 ppm TMA ($R_a/R_g=111.7$, $R_a$: resistance in air, $R_g$: resistance in gas) at $400^{\circ}C$, while the responses of pure ZnO hollow nanofibers was low ($R_a/R_g=47.1$). In addition, the doping of Mo enhanced selectivity toward TMA. The enhancement of gas response and selectivity to TMA by Mo doping to ZnO nanofibers was discussed in relation to the interaction between basic analyte gas and acidic additive materials.

Calculation on Electronic Structure of ZnO with Impurities Belonging to III and IV Family (III, IV족 불순물이 첨가된 ZnO의 전자상태계산)

  • Lee, Dong-Yoon;Kim, Hyun-Ju;Koo, Bo-Kun;Lee, Won-Jae;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.309-312
    • /
    • 2004
  • The electronic structure of ZnO oxide semiconductor having high optical transparency and good electric conductivity was theoretically investigated by $DV-X_{\alpha}$(the discrete variation $X_{\alpha}$) method, which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The electrical and optical properties of ZnO are seriously affected by the addition of impurities. The imnurities are added to ZnO in order to increase the electric conductivity of an electrode without losing optical transparency. In this study, the effect of impurities of III and IV family on the band structure, impurity levels and the density of state of ZnO were investigated. The cluster model used for calculations was $[MZn_{50}O_{53}]^{-2}$(M=elements belonging to III and IV family).

  • PDF