• Title/Summary/Keyword: Zn/Mg mixture

Search Result 72, Processing Time 0.154 seconds

Tubular-shaped ZnO Crystals by Thermal Evaporation Technique in Air (공기 중에서 열증발법에 의하여 제작된 튜브 형상의 ZnO 결정)

  • Lee, Jung-Hun;Lee, Geun-Hyoung;Nahm, Choon-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.3
    • /
    • pp.141-145
    • /
    • 2014
  • Tubular-shaped ZnO crystals were synthesized by thermal evaporation technique under air atmosphere. Mixture of Zn and Mg powder was used as the source material. The thermal evaporation and oxidation of Zn/Mg mixture were carried out for 1 hr at $1,000^{\circ}C$ and $1,200^{\circ}C$ under in air under atmospheric pressure. When only Zn powder was used as a source material, tetrapod-shaped ZnO crystals were synthesized. This provides that Mg played a key role in the formation of the tubular-shaped crystals. SEM images showed that the tubular-shaped ZnO crystals grew along [0001] direction. XRD spectrum revealed that the ZnO tubes had hexagonal wurtzite structure. Two emission peaks at 380 nm and 510 nm were observed in the room temperature cathodoluminescence spectrum.

Structural and Magnetic Properties of LiZnO Added MgFe2O4 Composite

  • Tadi, Ravindar;Kim, Yong-Il;Kim, Cheol-Gi;Ryu, Kwon-Sang
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.165-168
    • /
    • 2010
  • $Li_{0.1}Zn_{0.9}O$ and $MgFe_2O_4$ powders were synthesized using chemical methods and mixed in different proportions to prepare a mixture of $Li_{0.1}Zn_{0.9}O$ and $MgFe_2O_4$ that was thermally treated between 900 to $1100^{\circ}C$ for 1 hour. Structural characterization was done using X-ray powder diffraction measurements. Grain sizes and morphologies of $Li_{0.1}Zn_{0.9}O$, $MgFe_2O_4$, and $Li_{0.1}Zn_{0.9}O+MgFe_2O_4$ samples were observed using a scanning electron microscope. Variation of magnetic properties of the $Li_{0.1}Zn_{0.9}O+MgFe_2O_4$ samples due to the addition of $Li_{0.1}Zn_{0.9}O$ was studied in relation to the structural changes occurring due to the thermal treatment. In particular, changes in the cationic distribution between the tetrahedral and octahedral positions were studied with respect to the increase of the annealing temperature. Magnetization was found to be dependent on the cations distributed in the tetrahedral and octahedral sites of the $MgFe_2O_4$.

Glass Forming Ability and Characteristic Evaluation in Ca-Mg-Zn Alloy System (Ca-Ma-Zn 합금계에서 비정질 형성능 및 특성 평가)

  • Park, Eun-Soo;Kim, Won-Tae;Kim, Do-Hyang
    • Journal of Korea Foundry Society
    • /
    • v.26 no.2
    • /
    • pp.77-84
    • /
    • 2006
  • The effect of alloy composition on the glass forming ability (GFA) of the Ca-rich Ca-Mg-Zn alloys has been investigated in $Ca_{65}Mg_{5+x}Zn_{30-x}$ and $Ca_{55+x}Mg_{15}Zn_{30-x}$ (x=0, 5, 10, 15, 20) alloys. In a wide composition range of 15-25% Zn and 10-20% Mg bulk metallic glass (BMG) samples with the diameter larger than 6 mm are fabricated by conventional copper mold casting method in air atmosphere. Among the alloys investigated, the $Ca_{65}Mg_{15}Zn_{20}$ alloy exhibits the highest GFA enabling to form BMG sample with the diameter of at least 15 mm. The crystalline phase formed during solidification of $Ca_{65}Mg_{15}Zn_{20}$ ($D_{max}=15\;mm$) could be identified as a mixture of $Ca_3Zn$ and $CaMg_2$ cause by the redistribution of the constituent elements on long-range scale. The compressive fracture strength and fracture elongation of the $Ca_{65}Mg_{15}Zn_{20}$ BMG are 602 MPa and 2.08% respectively. The ${\sigma}$ parameter which has been recently proposed for evaluating GFA exhibits better correlation with GFA of Ca-Mg-Zn alloys than other parameters suggested so far such as ${\Delta}T_x$, $T_{rg}$, K, ${\gamma}$, and ${\Delta}T^*$ parameters.

Evaluation of the Inhibitory Effect of Cu2+, Al3+ and Zn2+ on the Activated Sludge (Cu2+, Al3+, Zn2+이 활성슬러지에 미치는 저해영향 평가)

  • Kim, Chang-Gyu;Kim, Yo-Yong;Park, Ik-Beom;Song, Jin-Ho;Nam, Woo-Kyong;Han, Song-Hee;Kim, Bok-Jun;Oh, Jo-Gyo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.87-93
    • /
    • 2015
  • In this study, the inhibitory effect of toxic metals was investigated on the activated sludge of the municipal sewage treatment plant. The allowable concentration of toxic metals was also estimated for the stable operation of the biological treatment process. The single and mixture toxicity of $Cu^{2+}$, $Al^{3+}$ and $Zn^{2+}$ were evaluated for the activated sludge microorganisms. As a result, nitrifying microorganisms were more susceptible than heterotrophic microorganisms. $IC_{10}$ (Inhibition Concentration of 10%) of $Cu^{2+}$, $Al^{3+}$ and $Zn^{2+}$ for the nitrifying microorganisms was 3 mg/L, 7 mg/L and 25 mg/L, respectively. The mixture toxicity showed three times more sensitive than the single toxicity. The concentrations of $Cu^{2+}$, $Al^{3+}$ and $Zn^{2+}$ to minimize the inhibitory effect on organic matter removal and nitrification in batch experiments were found to be 1.3 mg/L, 2.5 mg/L and 6.3 mg/L.

Effect of Flux Chloride Composition on Microstructure and Coating Properties of Zn-Mg-Al Ternary Alloy Coated Steel Product (플럭스 염화물 조성이 Zn-Mg-Al 3원계 합금도금층의 미세조직 및 도금성에 미치는 영향)

  • Kim, Ki-Yeon;So, Seong-Min;Oh, Min-Suk
    • Korean Journal of Materials Research
    • /
    • v.31 no.12
    • /
    • pp.704-709
    • /
    • 2021
  • In the flux used in the batch galvanizing process, the effect of the component ratio of NH4Cl to ZnCl2 on the microstructure, coating adhesion, and corrosion resistance of Zn-Mg-Al ternary alloy-coated steel is evaluated. Many defects such as cracks and bare spots are formed inside the Zn-Mg-Al coating layer during treatment with the flux composition generally used for Zn coating. Deterioration of the coating property is due to the formation of AlClx mixture generated by the reaction of Al element and chloride in the flux. The coatability of the Zn-Mg-Al alloy coating is improved by increasing the content of ZnCl2 in the flux to reduce the amount of chlorine reacting with Al while maintaining the flux effect and the coating adhesion is improved as the component ratio of NH4Cl to ZnCl2 decreases. Zn-Mg-Al alloy-coated steel products treated with the optimized flux composition of NH4Cl·3ZnCl2 show superior corrosion resistance compared to Zn-coated steel products, even with a coating weight of 60 %.

Effects of Ti Addition on Microstructure and Mechanical Properties of Mg-xAl-yZn Magnesium Alloys by Thixomolding Process (Thixomolding 공정으로 제조된 Mg-xAl-yZn계 마그네슘 합금의 미세조직과 기계적 물성에 미치는 Ti 첨가 영향)

  • Park, Sung-Hyun;Jang, Ho-Seung;Lee, Ji-Ho;Park, No-Jin;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.4
    • /
    • pp.168-174
    • /
    • 2019
  • The microstructural features and relative room temperature mechanical properties were investigated in various compositions of Mg-xAl-yZn alloys by thxiomolding process. The microstructure was composed of ${\alpha}$-Mg particles and mixture of ${\alpha}$-Mg and ${\beta}-Mg_{17}Al_{12}$ eutectic phase. The amount of ${\beta}-Mg_{17}Al_{12}$ eutectic phase in mixture was increased with increasing Al and Zn contents without grain refinement. After adding Ti content, however, the morphology of ${\beta}-Mg_{17}Al_{12}$ eutectic phase transformed from net-like to discontinuous shape and the average grain size reduced. To determine the relationship between microstructural features and their mechanical properties, a tensile test was performed at room temperature. As a result, it was found that the mechanical properties were improved in all of Ti contained alloys due to increased elongation and the mechanisms are discussed in terms of microstructural evolution.

Investigation on the Sintering Behavior and Mechanical Properties of Al-Zn-Mg Alloy Powders Mixed with Al-Si-SiC Composite Powders (Al-Si-SiC 복합분말과 Al-Zn-Mg계 합금분말이 혼합된 분말의 소결 거동 및 기계적 특성연구)

  • Jang, Gwang-Joo;Kim, Kyung Tae;Yang, Sangsun;Kim, Yong-Jin;Park, Yong-Ho
    • Journal of Powder Materials
    • /
    • v.21 no.6
    • /
    • pp.460-466
    • /
    • 2014
  • Al-Si-SiC composite powders with intra-granular SiC particles were prepared by a gas atomization process. The composite powders were mixed with Al-Zn-Mg alloy powders as a function of weight percent. Those mixture powders were compacted with the pressure of 700 MPa and then sintered at the temperature of $565-585^{\circ}C$. T6 heat treatment was conducted to increase their mechanical properties by solid-solution precipitates. Each relative density according to the optimized sintering temperature of those powders were determined as 96% at $580^{\circ}C$ for Al-Zn-Mg powders (composition A), 97.9% at $575^{\circ}C$ for Al-Zn-Mg powders with 5 wt.% of Al-Si-SiC powders (composition B), and 98.2% at $570^{\circ}C$ for Al-Zn-Mg powders with 10 wt.% of Al-Si-SiC powders (composition C), respectively. Each hardness, tensile strength, and wear resistance test of those sintered samples was conducted. As the content of Al-Si-SiC powders increased, both hardness and tensile strength were decreased. However, wear resistance was increased by the increase of Al-Si-SiC powders. From these results, it was confirmed that Al-Si-SiC/Al-Zn-Mg composite could be highly densified by the sintering process, and thus the composite could have high wear resistance and tensile strength when the content of Al-Si-SiC composite powders were optimized.

Utilization of Dietary Nutrients, Retention and Plasma Level of Certain Minerals in Crossbred Dairy Cows as Influenced by Source of Mineral Supplementation

  • Gowda, N.K.S.;Prasad, C.S.;Ashok, L.B.;Ramana, J.V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.221-227
    • /
    • 2004
  • Nutrient utilization and plasma level of minerals were studied in lactating crossbred cows fed diet supplemented from different source of minerals. Twelve crossbred cows of first to third lactation during their mid stage of lactation were distributed equally under two groups and were fed concentrate mixture, green fodder (para grass) and finger millet straw as per requirement. Cows in group I were fed concentrate mixture supplemented with 1% mineral mixture whereas cows in group II were not supplemented with mineral mixture in the concentrate mixture but were offered additional quantity of green fodder (1 kg DM/cow/day) to compensate for the requirement of minerals. Balance study conducted towards the end of 120 days of feeding experiment indicated that the total dry matter intake in both the groups did not differ significantly. The cows in group II offered additional quantity of green fodder consumed significantly (p<0.05) more of green fodder (5.11 vs. 4.51 kg /animal/day) and the cows in group I consumed significantly (p<0.01) more of finger millet straw (1.71 vs. 0.92 kg/animal/day). The digestibility of major nutrients did not differ between the groups except for ether extract which was significantly (p<0.05) lower in cows fed additional green fodder. The total daily intake of P, Cu, Fe and Co did not differ significantly in both the groups whereas significantly higher intakes of Ca, Mg, Zn and Mn were observed in cows supplemented with inorganic source of minerals. However, supplementation through both the sources could meet the mineral requirement in group I and group II. The gut absorption (%) of all the minerals was comparable between the groups except for Mg which was significantly (p<0.05) higher in cows supplemented mineral mixture. The net retention of all the minerals was significantly more in the group supplemented with inorganic source of minerals. Except for P, Mg and Co the retention as percentage of total intake was comparable for all minerals in both the groups. Irrespective of source of mineral supplementation the average monthly blood plasma mineral levels (Ca, P, Mg, Cu, Zn, Fe) were within the normal range and comparable between the groups. Lower level of Cu observed at the start of the experimental feeding in both the groups increased with the advancement of supplemental feeding. The plasma Zn and Fe content in cows of both the groups did not vary. The blood plasma level of some minerals (Ca, P, Mg and Cu) was significantly higher towards the end of experimental feeding as compared to the initial values due to the reduction in milk yield with advancement of lactation or due to supplemental effect of minerals. It could be concluded that supplementation of minerals through inorganic source is better utilized in terms of retention as compared to green fodder (para grass), which is a moderate source of most nutrients.

Effect of Al and Mg Contents on Wettability and Reactivity of Molten Zn-Al-Mg Alloys on Steel Sheets Covered with MnO and SiO2 Layers

  • Huh, Joo-Youl;Hwang, Min-Je;Shim, Seung-Woo;Kim, Tae-Chul;Kim, Jong-Sang
    • Metals and materials international
    • /
    • v.24 no.6
    • /
    • pp.1241-1248
    • /
    • 2018
  • The reactive wetting behaviors of molten Zn-Al-Mg alloys on MnO- and amorphous (a-) $SiO_2$-covered steel sheets were investigated by the sessile drop method, as a function of the Al and Mg contents in the alloys. The sessile drop tests were carried out at $460^{\circ}C$ and the variation in the contact angles (${\theta}_c$) of alloys containing 0.2-2.5 wt% Al and 0-3.0 wt% Mg was monitored for 20 s. For all the alloys, the MnO-covered steel substrate exhibited reactive wetting whereas the $a-SiO_2$-covered steel exhibited nonreactive, nonwetting (${\theta}_c>90^{\circ}$) behavior. The MnO layer was rapidly removed by Al and Mg contained in the alloys. The wetting of the MnO-covered steel sheet significantly improved upon increasing the Mg content but decreased upon increasing the Al content, indicating that the surface tension of the alloy droplet is the main factor controlling its wettability. Although the reactions of Al and Mg in molten alloys with the $a-SiO_2$ layer were found to be sluggish, the wettability of Zn-Al-Mg alloys on the $a-SiO_2$ layer improved upon increasing the Al and Mg contents. These results suggest that the wetting of advanced high-strength steel sheets, the surface oxide layer of which consists of a mixture of MnO and $SiO_2$, with Zn-Al-Mg alloys could be most effectively improved by increasing the Mg content of the alloys.

Chemically Induced Grain Boundary Migration of MgAl2O4 by ZnO (ZnO의 화학구동력에 의한 $MgAl_2O_4$의 입계이동)

  • Choi, Kyoon;Cho, Eu-Seong;Kang, Suk-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.11
    • /
    • pp.888-892
    • /
    • 1992
  • The chemically induced grain-boundary migration has been studied in MgAl2O4 spinel under ZnO atmosphere. MgAl2O4 compacts been prepared by sintering powder mixture of Al2O3 and MgO at 1$600^{\circ}C$ for 60 h in air. The sintered MgAl2O4 has been heat-treated at 150$0^{\circ}C$ in a ZnO atmosphere. During the heat-treatment grain boundaries have become curved or faceted, and the total area of grain boundaries have increased. In the migrated region, the ZnO content is higher by 6 wt% than that in other regions, indicating that the migration was induced by addition of ZnO. In some shrinking grains, the faceted planes of different grain boundaries for the same grain are parallel to each other. This result provide an experimental support for the coherency strain energy in diffusion layer of the shrinking grain as being the major driving force. Calculated coherency strain energy of MgAl2O4 shows the maximum at {111} planes and the minimum at {100} planes. Although the minimum surface energy is at {111} planes, the faceted moving boundaries are expected to be {100} planes because of lowest driving force for the grain-boundary migration.

  • PDF