• Title/Summary/Keyword: Zirconia (ZrO2)

Search Result 309, Processing Time 0.027 seconds

Ceramic injection molding of the watch case composed by zirconia$(ZrO_2)$ powder (지르코니아$(ZrO_2)$ 분말을 이용한 시계케이스의 세라믹 사출성형)

  • Kwak T.S.;Shin H.Y.;Lim J.I.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.275-278
    • /
    • 2005
  • This study has focused on manufacturing technique of powder injection molding of watch case which made from zirconia powder. A series of computer simulation process was applied to prediction of the flow pattern in the inside of the mould and defects as weld line. The material properties of melted feedstock inclusive of the PVT graph and thermal viscosity flowage properties were measured for obtaining the input data in computer simulation. Also, molding experiment was conducted and the results of experiment showed that good agreement with simulation results far flow pattern and weld line location. On the other hand, gravity and inertia effect have an influence on velocity of melt front because of high density of ceramic powder particles in powder injection molding against the polymer injection molding process. In the experiment, the position of melt front was compared with upper gate and lower gate position. The gravity and inertia effect could be confirmed in the experimental results.

  • PDF

A Study on the Improvement of Oxidation and Corrosion Resistance of Stainless Steel by Sol-Gel Ceramic Coating (II); Effect on Oxidation and Corrosion REsistance of $CeO_2$ Stabilized Zirconia Thin Film (졸-겔 세라믹 코팅에 의한 스테인레스강의 내산화 및 내식성 향상에 관한 연구 (II);$CeO_2$ 안정화 지르코니아 박막의 내산화 및 내식성 효과)

  • 이재호;우일기;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.1
    • /
    • pp.95-105
    • /
    • 1995
  • Ceria(CeO2) stabilized zirconia(CeSZ) sol was synthesized with zirconium n-butoxide Zr(OC4H9)4 and cerium nitrate hexahydrate Ce(NO3)3.6H2O as precursors and ethylacetoacetate(EAcAc) as a chelating agent under atmosphere. CeSZ films were deposited on AISI 304 stainless steel using the prepared polymeric sol by dipcoating and the coating characteristics were investigated by XRD, ellipsometry, scratch test and SEM. The CeSZ film began to crystallize from amorphous to tetragonal phase at 40$0^{\circ}C$ and it was not converted into monoclinic phase up to 100$0^{\circ}C$ by the addition of 16mol% CeO2 as a stabilizer which could suppress phase transformation of zirconia. The CeSZ films were prepared by varying the EAcAc contents and the cncentration of CeSZ sol and measured the thickness and refractive index. From these results, it was found that the EAcAc contents and concentration of CeSZ coating sol evidently affect the densification of CeSZ film. The CeSZ film coated with 0.4M CeSZ sol and heat-treated at $600^{\circ}C$ for 10min had thickness of 50nm and 17% porosity. The CeSZ film on 304 stainless steel effectively acted as a protective layer against oxidation up to 80$0^{\circ}C$ and had superior corrosion resistance in 25% H2SO4 solution for 4.5 hrs.

  • PDF

Characteristics of Bulk and Coating in Gd2-xZr2+xO7+0.5x(x = 0.0, 0.5, 1.0) System for Thermal Barrier Coatings

  • Kim, Sun-Joo;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.652-658
    • /
    • 2016
  • Gadolinium zirconate, $Gd_2Zr_2O_7$, is one of the most versatile oxides among the new thermal-barrier-coating (TBC) materials for replacing conventional yttira-stabilized zirconia (YSZ). $Gd_2Zr_2O_7$ exhibits excellent properties, such as low thermal conductivity, high thermal expansion coefficient comparable with that of YSZ, and chemical stability at high temperature. In this study, bulk and coating specimens with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were fabricated in order to examine the characteristics of this gadolinium zirconate system with different Gd content for TBC applications. Especially, coatings with $Gd_{2-x}Zr_{2+x}O_{7+0.5x}$ (x = 0.0, 0.5, 1.0) compositions were produced by suspension plasma spray (SPS) with suspension of raw powder mixtures prepared by planetary milling followed by ball milling. Phase formation, microstructure, and thermal diffusivity were characterized for both sintered and coated specimens. Single phase materials with pyrochlore or fluorite were fabricated by normal sintering as well as SPS coating. In particular, coated specimens showed vertically-separated columnar microstructures with thickness of $400{\sim}600{\mu}m$.

Synthesis of Dimethyl Carbonate from Methanol and Supercritical Carbon Dioxide over K2CO3/ZrO2 Catalysts (메탄올과 초임계 이산화탄소로부터 K2CO3/ZrO2 촉매를 이용한 디메틸카보네이트 (Dimethyl Carbonate) 합성)

  • Hong, Seung Tae;Park, Hyung Sang;Lim, Jong Sung;Yoo, Ki-Pung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.550-554
    • /
    • 2008
  • The synthesis of dimethyl carbonate (DMC) from methanol and supercritical carbon dioxide over $K_2CO_3/ZrO_2$ catalysts have been studied. The catalysts were prepared by impregnating $ZrO_2$ with an aqueous $K_2CO_3$ solution. The optimum calcination temperature to disperse K species on the $ZrO_2$ surface was found to be 673 K. Monoclinic $ZrO_2$ was not active, as itself, for the DMC production. However, when the $K_2CO_3$ was impregnated on the $ZrO_2$, the catalytic performance was improved. Besides the catalyst, $CH_3I$ was used as a promoter. The $CH_3I$ promoter as well as the $K_2CO_3/ZrO_2$ catalyst was found to take an important role to improve the production of DMC. The optimum quantities for the catalyst and the promoter were estimated. The effect of the catalyst and the promoter for the DMC synthesis from methanol and supercritical carbon dioxide was investigated and the reaction mechanism was proposed.

Effects of Aging on Properties of MgO-Partially Stabilized Zirconia (마그네시아 부분안정화 지르코니아 소결체의 특성에 미치는 열처리 효과)

  • 정형진;오영제;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.243-250
    • /
    • 1987
  • The effects aging on some properties and thermal-shock behavior of zirconia partially stabilized with 9 mol% MgO (9MZ) were studied. 9MZ specimens were aged over $1200^{\circ}$-$1400^{\circ}C$ for 12hours subsequently, after sintering at $1650^{\circ}C$ for 4 hours. Fracture strength(both before and after thermal-shock test), linear thermal expansion, monoclinic fraction and phase transition by XRD, density, galvanic potential and microstructure were measured. Quantitative chemical analysis around the grain-boundary of the specimen aged at $1350^{\circ}C$ was also conducted by EDX. The aging of 9MZ specimen causes a thermal decomposition of cubic-$ZrO^{2}$ into the formation metastable tetragonal-$ZrO^{2}$ and MgO. The former increases the residual strength after thermal-shock test and the latter improves the thermal-shock resistance due to thermal conduction through the continuous magnesia phase and the formation of monoclinic phase content in matrix were increased with decreasing the aging temperature from $1400^{\circ}C$ to $1200^{\circ}C$. Galvanic potential of the aged specimen exhibited a proper emf characteristic.

  • PDF

Space Charge Effect on Grain Growth Kinetics of Tetragonal Zirconia Polycrystal

  • Chon, Uong
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.1-11
    • /
    • 1999
  • The effect of aliovalent dopents, $Nb_3O_5$ and MnO, on the grain growth kinetics of 12 mol% ceria stabilized tetragonal zirconia polycrystals (Ce-TZP) was studied. All specimens were sintered at $1550^{\circ}C$ for 20 minutes prior to annealing at different temperatures to study grain growth kinetics. Grain growth kinetics of Ce-TZP and 1 mol% $Nb_2O_5$ doped Ce-TZP (Ce-TZP/$Nb_3O_5$) during annealing at 1475, 1550, and $1600^{\circ}C$ adequately matched with square law $(D^2-D_\;o^2=k_at)$. However, grain growth in 1 mol% MnO suppressed grain growth in Ce-TZP by drag force exerted by $Mn^{+2}$ ions which segregated strongly to the positively-charged grain boundaries of Ce-TZP, $Nb_2O_5$ enhanced grain growth by increasing the concentration of vacancies of $Zr^{+4}$ ion and $Ce^{+4}$ ions. Surface analysis with X-ray photoelectron spectroscopy (XPS) showed the segregation of Mn+2 ions to grain boundaries. The kinetics of grain growth obtained in the base Ce-TZP and the Ce-TZPs with the aliovalent dopants were examined in the context of impurity drag effect and space charge effect.

  • PDF

Preparation of Suspension in La2O3-Gd2O3-ZrO2 System via Planetary Mill and Characteristics of (La1-xGdx)2Zr2O7 Coatings Fabricated via Suspension Plasma Spray (유성구볼밀을 이용한 La2O3-Gd2O3-ZrO2 계 서스펜션준비와 서스펜션 플라즈마용사를 이용한 (La1-xGdx)2Zr2O7 코팅증착과 특성)

  • Kwon, Chang-Sup;Lee, Sung-Min;Oh, Yoon-Suk;Kim, Hyung-Tae;Jang, Byung-Koog;Kim, Seongwon
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.453-459
    • /
    • 2013
  • Lanthanum/gadolinium zirconate coatings are deposited via suspension plasma spray with suspensions fabricated by a planetary mill and compared with hot-pressed samples via solid-state reaction. With increase in processing time of the planetary mill, the mean size and BET surface area change rapidly in the case of lanthanum oxide powder. By using suspensions of planetary-milled mixture between lanthanum or gadolinium oxide and nano zirconia, dense thick coatings with fully-developed pyrochlore phases are obtained. The possibilities of these SPS-prepared coatings for TBC application are also discussed.

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

Continuous Processing of Monodispersed Zirconia Powders (초음파 혼합 연속공정에 의한 단분산 지르코니아 분체의 합성)

  • Rhee, Jhun;Jo, Dong-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.919-925
    • /
    • 1992
  • Continuous synthesis process for monodispersed zirconia powders with ultrasonic wave mixing was developed. Reactant solutions were flowed through a T-tube with small diameter and then mixed in a microscale with ultrasonification. Reaction and aging were followed during the mixed solution of reactants is in plug flowing through a narrow long teflon tubing. Zr(n-OC4H9)4 in ethanol and H2O in ethanol were used as reactants. From this process monodispersed, spherical, non-agglomerated, singlet hydrated zirconia powders with 0.6 $\mu\textrm{m}$ average size were obtained. Geometrical standard deviation of the particle size distribution was less than 1.2 with ultrasonic mixing, and the geometrical standard deviation was not affected by the flow rate of the reactants.

  • PDF

Ce0.8Sm0.2O2 Sol-gel Modification on La0.8Sr0.2Mn0.8Cu0.2O3 Cathode for Intermediate Temperature Solid Oxide Fuel Cell

  • Lee, Seung Jin;Kang, Choon-Hyoung;Chung, Chang-Bock;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.4
    • /
    • pp.77-82
    • /
    • 2015
  • To increase the performance of solid oxide fuel cell operating at intermediate temperature ($600^{\circ}C{\sim}800^{\circ}C$), $Sm_{0.2}Ce_{0.8}O_2$ (SDC) thin layer was applied to the $La_{0.8}Sr_{0.2}Mn_{0.8}Cu_{0.2}O_3$ (LSMCu) cathode by sol-gel coating method. The SDC was employed as a diffusion barrier layer on the yttria-stabilized zirconia(YSZ) to prevent the interlayer by-product formation of $SrZrO_3$ or $La_2Zr_2O_7$. The by-products were hardly formed at the electrolyte-cathode interlayer resulting to reduce the cathode polarization resistance. Moreover, SDC thin film was coated on the cathode pore wall surface to extend the triple phase boundary (TPB) area.