• Title/Summary/Keyword: Zircon mineral

Search Result 88, Processing Time 0.026 seconds

The Age of the Okcheon Metamorphic Belt-How Much Do We Know? (옥천 변성대의 시기-우리는 얼마만큼 알고 있나?)

  • Kwon, Sung-Tack
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.51-56
    • /
    • 2008
  • The geologic age of the Okcheon metamorphic belt, used to be a longstanding puzzle, has been settled down to Neoproterozoic to Paleozoic with discovery of fossils and isotopic age dating of metavolcanic rocks. As isotopic ages become accumulated, there appeared a controversy over the age of peak metamorphism in the Okcheon metamorphic belt, i.e., a single late Permian-early Triassic metamorphism (CHIME allanite age and U-Pb age of metamorphic zircon), or earlier independent presence of early Permian metamorphism (U-Pb age of allanite within garnet porphyroblast). If we compare the isotopic ages that can represent metamorphism, the data for the latter have much larger error than those of the former with some overlap considering the error limits. It means that, the former, supported by two independent ages, is considered a better representation for the age of metamorphism of the Okcheon metamorphic belt. Therefore, I propose the idea of early Permian metamorphism should better be reserved until conclusive evidence appears. The late Permian-early Triassic metamorphic age suggest that the effect of continental collision influenced much of the middle part of Korean Peninsula, namely, the Imjingang belt, the Gyeonggi massif and the Okcheon belt.

Geology and Ore Deposit of the Apdong Nb-Ta Mine, North Korea (북한 압동 니오븀-탄탈륨(Nb-Ta) 광산의 지질 및 광상)

  • 이재호;김유동
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.407-413
    • /
    • 2003
  • The geology of the Apdong Nb-Ta deposit, is hosted by alkali metasomatites, consist of Upper Proterozoic sedimentary rocks, alkali syenites(Hoamsan intrusive) of Phyonggang Complex(late Paleozoic to early Mesozoic), Jurassic granite and Quaternary basalt. Alkali syenites are distinguished as alkali amphibole-pyroxene syenite, alkali amphibole-biotite syenite, biotite-nepheline syenite, biotite syenite, and quartz-alkali amphibole-pyroxene syenite. Alkali metasomatites are the products of intense post-magnatic metasomatism, and form the Nb-Ta ore bodies as the belt, irregular vein and lenticular types in the southern part of Hoamsan intrusive. The ore mineralization is characterized by the occurrence of pyrochlore, zircon, and small amounts of columbite, fergusonite. magnetite, fluorite, molybdenite, ilmenite, titanite, apatite, and monazite. Pyrochlore is one of the niobium/tantalum oxides and contains substantial amounts of rare earths and radioactive elements. The compositional varieties of pyrochlore can be defined: (1) enriched in tantalum, uranium and cerium, (2) substantially tantalum- and fluorine-poor, and (3) enriched in thorium or barium. The geochemical characteristics, ore textures and mineral occurrences indicate that alkali metasomatism of the mineralizing fluid was the dominant ore-forming process.

Petrology, Geochemistry and Tectonic Implication of the A-type Daegang granite in the Namwon area, Southwestern part of the Korean Peninsula (한반도 남서부 남원 일대에 분포하는 A형 대강 화강암의 암석학, 지화학 및 지구조적 의미)

  • Kim, Yong-Jun;Cho, Deung-Lyong;Lee, Chang-Shin
    • Economic and Environmental Geology
    • /
    • v.31 no.5
    • /
    • pp.399-413
    • /
    • 1998
  • Daegang granite is located around the Namwon-gun, Cheolabuk-do, and is an elongate stock $(80 km^{2})$ in the NNE-SSW direction. Daegang granite has the very same mineralogical and geochemical characteristics as those of the typical A-type granites; (1) it is a one feldspar hypersolvus granite, and is classified as an alkali feldspar granite in the lUGS scheme, (2) has small amounts of Fe-rich biotite (annite) and alkali amphibole (ribeckite) that are late in the crystallization sequence of the granitic magma, (3) always contains opaque oxides, fluorite and zircon, (4) shows high and quite homogeneous $SiO_2$, content (mostly 72~77 wt.%) and $(Na_{2}O+K_{2}O)/Al_{2}O_{3}$ ratio (0.90~0.98), (5) contains high Ga, lOOOO*Ga/Ai, $K_{2}O+Na_{2}O$, $(K_{2}O+Na_{2}O)/CaO$, $K_{2}O/MgO$, FeO/MgO, agpaitic index, Zr, Nb, Ce, Y, Zn value or ratio that resemble to those of the Australian A-type granites (Whalen et al., 1987), and (6) has enriched LREE and HREE that show flat variation pattern with slightly depleted in HREE and profound Eu anomalies (Eu/Eu*=0.04~0.l4). In the tectonic discrimination diagrams of Pearce et al. (1984) and Eby (1992), Daegang granite is classified as a within plate granite and $A_{2}-type$.

  • PDF

Geochronological and Geotectonic Implications of the Serpentinite Bodies in the Hongseong Area, Central-western Korean Peninsula (한반도 중서부 홍성지역 내에 분포하는 사문암체의 지질연대학 및 지구조적 의미)

  • Kim, Sung Won;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.49 no.4
    • /
    • pp.249-267
    • /
    • 2016
  • The Hongseong area of the central-western Korean Peninsula is considered to be a part of collision zone that is tectonically correlated to the Qinling-Dabie-Sulu belt of China. The area includes the elliptical-shaped serpentinized ultramafic bodies, together with mafic rocks. The studied bodies are in contact with the surrounded Neoproterozoic alkali granites at the Baekdong and Wonnojeon bodies and the Paleoproterozoic Yugu gneiss at the Bibong body. The Baekdong body contains the blocks of the Neoproterozoic alkali granites and the Late Paleozoic metabasites. The Bibong body also includes the Neoproterozoic alkali granite blocks. The Mesozoic intrusive rocks are also recognized at the Baekdong, Wonnojeon and Bibong bodies. On the other hand, the Early Cretaceous volcanic rocks are occurred at the Bibong body. The detrital zircon SHRIMP U-Pb ages of the serpentinites at three bodies range variously from Neoarchean to Middle Paleozoic at the Baekdong body, and from Neoarchean to Early Cretaceous at the Wonnojeon and Bibong bodies. Although serpentinization does not generally produce minerals suitable for direct isotopic dating, the youngest Middle Paleozoic age at the Baekdong body and the Early Cretaceous age at the Wonnojeon and Bibong bodies indicate the possible upper age limit for the (re)serpentinization. Especially, the Early Cretaceous serpentinization ages may be related to the widespread Early Cretaceous igneous activity in the central-southern Korean Peninsula. Age results for the serpentinite bodies and the included blocks of the studied serpentinized ultramafic bodies in the Hongseong area, therefore, provide several possible interpretations for the serpentinization ages of the ultramafic rocks as well as the geotectonic implications of serpentinization, requiring more detailed study including other serpentinized ultramafic bodies in the Hongseong area.

Distribution and Stratigraphical Significance of the Haengmae Formation in Pyeongchang and Jeongseon areas, South Korea (평창-정선 일대 "행매층"의 분포와 층서적 의의)

  • Kim, Namsoo;Choi, Sung-Ja;Song, Yungoo;Park, Chaewon;Chwae, Ueechan;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.383-395
    • /
    • 2020
  • The stratigraphical position of the Haengmae Formation can provide clues towards solving the hot issue on the Silurian formation, also known as Hoedongri Formation. Since the 2010s, there have been several reports denying the Haengmae Formation as a lithostratigraphic unit. This study aimed to clarify the lithostratigraphic and chronostratigraphic significance of the Haengmae Formation. The distribution and structural geometry of the Haengmae Formation were studied through geologic mapping, and the correlation of relative geologic age and the absolute age was performed through conodont biostratigraphy and zircon U-Pb dating respectively. The representative rock of the Haengmae Formation is massive and yellow-yellowish brown pebble-bearing carbonate rocks with a granular texture similar to sandstone. Its surface is rough with a considerable amount of pores. By studying the mineral composition, contents, and microstructure of the rocks, they have been classified as pebble-bearing clastic rocks composed of dolomite pebbles and matrix. They chiefly comprise of euhedral or subhedral dolomite, and rounded, well-sorted fine-grained quartz, which are continuously distributed in the study area from Biryong-dong to Pyeongan-ri. Bedding attitude and the thickness of the Haengmae Formation are similar to that of the Hoedongri Formation in the north-eastern area (Biryong-dong to Haengmae-dong). The dip-direction attitudes were maintained 340°/15° from Biryong-dong to Haengmae-dong with a thickness of ca. 200 m. However, around the southwest of the studied area, the attitude is suddenly changed and the stratigraphic sequence is in disorder because of fold and thrust. Consequently, the formation is exposed to a wide low-relief area of 1.5 km × 2.5 km. Zircon U-Pb age dating results ranged from 470 to 449 Ma, which indicates that the Haengmae Formation formed during the Upper Ordovician or later. The pebble-bearing carbonate rock consisted of clastic sediments, suggesting that the Middle Ordovician conodonts from the Haengmae Formation must be reworked. Therefore, the above-stated evidence supports that the geologic age of the Haengmae Formation should be Upper Ordovician or later. This study revealed that the Haengmae Formation is neither shear zone, nor an upper part of the Jeongseon Limestone, and is also not the same age as the Jeongseon Limestone. Furthermore, it was confirmed that the Haengmae Formation should be considered a unit of lithostratigraphy in accordance with the stratigraphic guide of the International Commission on Stratigraphy (ICS).

Origin and Evolution of Leucogranite of NE Yeongnam Massif from Samcheok Area, Korea (삼척지역 북동 영남 육괴에 분포하는 우백질 화강암의 기원 및 진화)

  • Cheong, Won-Seok;Na, Ki-Chang
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.16-35
    • /
    • 2008
  • We study metamorphism of metasedimetary rocks and origin and evolution of leucogranite form Samcheok area, northeastern Yeongnam massif, South Korea. Metamorphic rocks in this area are composed of metasedimentary migmatite, biotite granitic gneiss and leucogranite. Metasedimentary rocks, which refer to major element feature of siliclastic sediment, are divided into two metamorphic zones based on mineral assemblages, garnet and sillimanite zones. According to petrogenetic grid of mineral assemblages, metamorhpic P-T conditions are $740{\sim}800^{\circ}C$ at $4.8{\sim}5.8\;kbar$ in the garnet zone and $640-760^{\circ}C$ at 2.5-4.5kbar in sillimanite zone. The leucogranite (Imwon leucogranite) is peraluminous granite which has high alumina index (A/CNK=1.31-1.93) and positive discriminant factor value (DF > 0). Thus, leucogranite is S-type granite generated from metasedimentary rocks. Major and trace element diagram ($R_1-R_2$ diagram and Rb vs. Y+Nb etc.) show collisional environment such as syn-collisional or volcanic arc granite. Because Rb/sr ratio (1.8-22.9) of leucogranites is higher than Sr/Ba ratio (0.21-0.79), leucogranite would be derived from muscovite dehydrate melting in metasedimentary rocks. Leucogranites have lower concentration of LREE and Eu and similar that of HREE relative to metasedimentary rocks. To examine difference of REEs between leucogranites and metasedimentary rocks, we perform modeling using volume percentage of a leucogranite and a metasedimenatry rock from study area and REE data of minerals from rhyolite (Nash and Crecraft, 1985) and melanosome of migmatite (Bea et al., 1994). Resultants of modeling indicate that LREE and HREE are controlled by monazites and garnet, respectively, although zircon is estimated HREE dominant in some leucogranite without garnet. Because there are many inclusions of accessary phases such as monazite and zircon in biotites from metasedimentary rocks. leucogranitic magma was mainly derived from muscovite-breakdown in metasedimenary rocks. Leucogranites can be subdivided into two types in compliance with Eu anomaly of chondrite nomalized REE pattern; the one of negative Eu anomaly is type I and the other is type II. Leucogranites have lower Eu concetnrations than that of metasedimenary rocks and similar that of both type. REE modeling suggest that this difference of Eu value is due to that of components of feldspars in both leucogranite and metasedimentary rock. The tendency of major ($K_2O$ and $Na_2O$) and face elements (Eu, Rb, Sr and Ba) of leucogranites also indicate that source magma of these two types was developed by anatexis experienced strong fractionation of alkali-feldspar. Conclusionally, leucogranites in this area are products of melts which was generated by muscovite-breakdown of metasedimenary rock in environment of continetal collision during high temperature/pressure metamorphism and then was fractionated and crystallized after extraction from source rock.

A Preliminary Study on the Post-magmatic Activities Occurring at the Gonamsan Gabbroic Rocks in the Pocheon Area (포천지역 고남산 반려암질암 내 발생하는 후기 화성활동에 관한 예비 연구)

  • Lee, Ji-Hyun;Kim, Eui-Jun;Shin, Dongbok
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.77-95
    • /
    • 2022
  • The Gonamsan gabbroic complex in the Pocheon area, northwestern region of South Korea consists of a variety types of gabbroic rocks and associated Fe-Ti oxide deposits caused by magmatic differentiation. Post-magmatic intrusions (i.e., gabbroic pegmatite and pyroxene-apatite-zircon rocks) partly intruded into the gabbroic rocks. The gabbroic pegmatite occurs in monzodiorite and oxide gabbro of the complex, intimately and spatially associated with high-grade lenticular Fe-Ti oxide mineralization. The pegmatite can be subdivided into plagioclase-amphibole and pyroxene-olivine pegmatite, in which the contact surface is sharp. The plagioclase-amphibole pegmatite comprises plagioclase and amphibole, with lesser amount of pyroxene, ilmenite, sphene, apatite, and biotite. The pegmatite shows plagioclase-amphibole intergranular texture, in which the open space formed by large plagioclase laths (An2-26Ab72-98Or0-2) are infilled by amphibole. The pyroxene-olivine pegmatite is dark gray to black in color and also contains magnetite, ilmenite, spinel, apatite, and calcite as a minor component. The pyroxene (En35-36Fs8-9Wo55) and olivine (Fo84-85Fa15-16) partly show a poikilitic texture defined by smaller euhedral olivine enclosed by coarser clinopyroxene. Fe-Ti oxide minerals consist mainly of magnetite and ilmenite that are found interstitially to earlier formed silicates. Subsequently, they are encompassed by reaction rim (almost of amphibole and biotite) along the boundary with surrounding silicate minerals. Under the microscope, magnetite contains a lot of oxyexsolved ilmenite (trellis type) and spinel, and thereby is weakly enriched in magnetite-compatible elements such as Ti, Al, Mg, and V. The structure and textures at the contact zone as well as mineralogical disequilibrium between gabbroic pegmatite and the host gabbroic rocks suggest that the pegmatite may form as a result of accumulation from Fe-rich melt (or liquid) that occurred somewhere rather than in situ form from the host gabbroic rock during the magmatic differentiation. Consequently, the preliminary study suggests that further study on the post-magmatic activities can not only help us improve our understanding on magmatic fractionation but also provide critical information on Fe-Ti oxide mineralization in gabbroic rocks resulting from the magmatic differentiation.

Geochronological and Geochemical Studies for Triassic Plutons from the Wolhyeonri Complex in the Hongseong Area, Korea (홍성지역 월현리 복합체 내에 분포하는 트라이아스기 심성암류의 지질연대학 및 지구화학적 연구)

  • Oh, Jae-Ho;Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.46 no.5
    • /
    • pp.391-409
    • /
    • 2013
  • The Hongseong area of the southwestern Gyeonggi massif is considered to be part of suture zone that is tectonically correlated with the Qinling-Dabie-Sulu belt of China in terms of the preservation of collisional evidences during Triassic in age. The Wolhyeonri complex, preserved at the center of the Hongseong area, consists mainly of Neoproterozoic orthogneisses and Middle Paleozoic intermediate- to high-grade metamorphic schists, orthogneisses and mafic metavolcanics. The area includes various Middle to Late Triassic intrusives (e.g. dyke or stock). They are mainly monzonite and aplite with small intrusions of monzodiorit, syenite and diorite in composition. The SHRIMP U-Pb zircon ages yield 237 Ma to 222 Ma. The geochemistry of the studied Triassic intrusives show similar subuction- or arc-type signatures having Ta-Nb troughs, depletion of P and Ti, and enrichment of LILEs (large ion lithophile elements). In addition, the Triassic plutons in the Hongseong area, including those from this study, mostly possess high-K calc-alkaline to shoshonitic tectonic affinity. These results could be tectonically correlated to the post-collisional magmatic event following the Triassic collision between the North and South China blocks in China. Therefore, the Triassic plutons in the Hongseong area offer an important insight into the Triassic geodynamic history of the NE Asian region.

Precambrian Crustal Evolution of the Korean Peninsula (한반도 선캠브리아 지각진화사)

  • Lee, Seung-Ryeol;Cho, Kyung-O
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.89-112
    • /
    • 2012
  • The Korean Peninsula consists of three Precambrian blocks: Nangrim, Gyeonggi and Yeongnam massifs. Here we revisited previous stratigraphic relationships, largely based on new geochronologic data, and investigated the crustal evolution history of the Precambrian massifs. The Precambrian strata have been usually divided into lower crystalline basements and upper supracrustal rocks. The former has been considered as Archean or Paleoproterozoic in age, whereas the latter as Paleoproterozoic or later. However, both are revealed as the Paleoproterozoic (2.3-1.8 Ga) strata as a whole, and Archean strata are very limited in the Korean Peninsula. These make the previous stratigraphic system wrong and require reconsideration. The oldest age of the basement rocks can be dated as old as Paleoarchean, suggested by the occurrence of ~3.6 Ga inherited zircon. However, most of crust-forming materials were extracted from mantle around ~2.7 Ga, and produced major portions of crust materials at ~2.5 Ga, which make each massif a discrete continental mass. After that, all the massifs belonged to continental margin orogen during the Paleoproterozoic time, and experienced repeated intracrustal differentiation. After the final cratonization occurring at ~1.9-1.8 Ga, they were stabilized as continental platforms. The Nangrim and Gyeonggi massif included local sedimentary deposition as well as igneous activity during Meso-to Neoproterozoic, but the Yeongnam massif remained stable before the development of Paleozoic basin.

Surface Sediments of the Continental Shelf and Slope off the Southeastern Coast of Korea (한국 동남해역 대륙붕과 대륙사면 표면퇴적물의 분포와 특성)

  • Lee, Chang-Bok;Park, Yong Ahn;Choi, Jin-Yong;Kim, Gi-Beom
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.39-51
    • /
    • 1989
  • A total of 139 surface sediment samples, collected from the continental shelf and slope off the southeastern coast of Korea, were analyzed in order to understand their grain-size, mineral composition and organic carbon content. Based on the grain-size characteristics, five surface sedimentary facies were distinguished: sand, clay, mud, sand-mud mixed, and sand-clay mixed facies. The sand facies appears to be composed mostly of relict sand. For mud, most of which seem to be of recent origin, two different sources were suggested, based principally on their areal distribution pattern and the local hydrographic conditions. Heavy mineral composition of the fine-sand size fraction allowed us to distinguish different sand populations from the study area. On the whole, the Hupo Bank sediments showed a high content of garnet, while the sediments from the northern part of the continental shelf were characterized by a relatively high content of metamorphic minerals (kyanite, sillimanite, andalusite, staurolite). Among clay minerals, the most abundant was illite, with chlorite, kaolinite and smectite following in decreasing order. Organic carbon contents in the sediments of the study area were generally high and showed an average value of 1.94%. The sediment grain-size exerted a strong influence on the organic carbon content. The highest organic carbon content, on the other hand, was found in the continental slope sediments.

  • PDF