• Title/Summary/Keyword: Zinc phthalocyanine(ZnPc)

Search Result 11, Processing Time 0.019 seconds

Synthesis and Characterization of Peripherally Ferrocene-modified Zinc Phthalocyanine for Dye-sensitized Solar Cell

  • An, Min-Shi;Kim, Soon-Wha;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3272-3278
    • /
    • 2010
  • Synthesis and structural characterization of peripherally ferrocene-substituted zinc phthalocyanine (ZnPc-Fc) were carried out for efficient far-red/near-IR performance in dye-sensitized nanostructured $TiO_2$ solar cells. Incorporating ferrocene into phthalocyanine strongly improved the dye solubility in polar organic solvents, and reduced surface aggregation due to the steric effect of bulky ferrocene substituents. The involvement of electron transfer reaction pathways between ferrocene and phthalocyanine in ZnPc-Fc was evidenced by completely quenched fluorescence from S1 state (< 0.08% vs ZnPc). Strong absorption bands at 542 and 682 nm were observed in the transient absorption spectroscopy of ZnPc-Fc in DMSO, which was excited at a 670 nm laser pulse with a 15 ps full width at half maximum. Also, the excited state absorption signals at 450 - 600 and 750 - 850 nm appeared from the formation of charge separated state of phthalocyanine's anion. The lifetime of the charge separate state in ZnPc-Fc was determined to be $170{\pm}8$ ps, which was almost 17 times shorter than that of the ZnPc.

Solvent Sensing Properties of Thin Films Based on Zinc phthalocyanine (ZnPc) Compounds (Zinc phthalocyanine(ZnPc)화합물의 이용한 유기용제 센서)

  • Kim D.H.;Kang Y.G.;Kim J.H.;Roh S.C.;Kim H.J.
    • Journal of the Korean Institute of Gas
    • /
    • v.9 no.4 s.29
    • /
    • pp.26-29
    • /
    • 2005
  • In this paper, the solvent sensing properties of the metallophthalocyanine macrocyclic compounds(ZnPc) have been deposited as thin films by the spin-coated method and evaporated methods onto alumina substrates and quartz substrates. And then the spin-coated materials of Zinc phthalocyanine solutions blended with $N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,\;1-biphenyl-4,4'-diamine\;and/or\; Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylene-vinylene]$ solutions. The influences of the blended metallophthalocyanine macrocyclic compounds on the resistance have been measured and analysed in five different vapour organic compounds.

  • PDF

The Application for Electrophotographic Photoreceptors of Zinc Oxide Adsorbed Copper Phthalocyanine and Sunfast Yellow (색소 흡착 산화아연 감광체의 전자사진 특성에 관한 연구)

  • Heo, Sun Ok;Kim, Young Soon
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.9
    • /
    • pp.632-639
    • /
    • 1994
  • For dye sensitization of zinc oxide in the visible region, copper phthalocyanine(CuPc) and sunfast yellow(SY) were adsorbed in two layers on zinc oxide powder. The adsorption structures of $\alpha-and\beta-CuPc$ on zinc oxide were investigated by photoacoustic, IR and Raman spectra. The ${\alpha}-and\;{\beta}$-polymorphs exhibited dimeric structure or molecular aggregates. The surface photovoltaic effect of ZnO/CuPc/SY showed higher than that of ZnO/SY/CuPc and $ZnO/\beta-CuPc/SY$ indicated better photosensitive than $ZnO/\alpha-CuPc/SY.$ Electrophotographic sensitivity of $ZnO/\beta-CuPc/SY$ was $$S_{1/2}=2.99{\times}10^{-2}(erg/cm^2)^{-1}$ at 630 nm.

  • PDF

Probing the Molecular Orientation of ZnPc on AZO Using Soft X-ray Spectroscopies for Organic Photovoltaic Applications

  • Jung, Yunwoo;Lee, Nalae;Kim, Jonghoon;Im, Yeong Ji;Cho, Sang Wan
    • Applied Science and Convergence Technology
    • /
    • v.24 no.5
    • /
    • pp.151-155
    • /
    • 2015
  • The interfacial electronic structure between zinc phthalocyanine (ZnPc) and aluminumdoped zinc oxide (AZO) substrates has been evaluated by ultraviolet photoemission spectroscopy and angle-dependent x-ray absorption spectroscopy to understanding the molecular orientation of a ZnPc layer on the performance of small molecule organic photovoltaics (OPVs). We find that the ZnPc tilt angle improves the ${\pi}-{\pi}$ interaction on the AZO substrate, thus leading to an improved short-circuit current in OPVs based on phthalocyanine. Furthermore, the molecular orientation-dependent energy level alignment has been analyzed in detail using ultraviolet photoemission spectroscopy. We also obtained complete energy level diagrams of ZnPc/AZO and ZnPc/indium thin oxide.

Photovoltaic Properties of Organic Solar Cell using Zinc phthalocyanine(ZnPC)/$C_{60}$ devices (Zinc phthalocyanine(ZnPC)/$C_{60}$ 소자를 이용한 유기 광소자의 광기전특성)

  • Lee, Ho-Sik;Hur, Sung-Woo;Oh, Hyun-Seok;Jang, Kyung-Uk;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.31-34
    • /
    • 2004
  • During the last 20 years organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerine$(C_{60})$ as electron acceptor(A) with doped charge transport layers, $Alq_3$ as an electron transport or injection layer. We observed the photovoltaic characteristics of the solar celt devices using the Xe lamp as a light source.

  • PDF

Photovoltaic Properties of Organic Solar Cell using Zinc phthalocyanine(ZnPc)/$C_{60}$ devices (Zinc phthalocyanine(ZnPc)/$C_(60)$ 소자를 이용한 유기 광소자의 광기전특성)

  • Lee, Ho-Sik;Hur, Sung-Woo;Lee, Won-Jae;Shin, Hoon-Kyu;Kim, Tae-Wan;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1712-1714
    • /
    • 2004
  • During the last 20 years organic semiconductors have attracted considerable attention due to their interesting physical properties followed by various technological applications in the area of electronics and opto-electronics. It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerine($C_{60}$) as electron acceptor(A) with doped charge transport layers, $Alq_3$ as an electron transport or injection layer. We observed the photovoltaic characteristics of the solar cell devices using the Xe lamp as a light source.

  • PDF

Properties of Photovoltaic Cell using ZnPc/C60 Double Layer Devices

  • Lee, Ho-Sik;Seo, Dae-Shik;Lee, Won-Jae;Jang, Kyung-Uk;Kim, Tae-Wan;Lee, Sung-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.3
    • /
    • pp.124-127
    • /
    • 2005
  • It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerene$(C_60)$ as electron acceptor(A) with doped charge transport layers, and BCP and $Alq_3$ as an exciton blocking layer(EBL). We have measured the photovoltaic characteristics of the solar cell devices using the Xe lamp as a light source. We were use of $Alq_3$ layer leads to external power conversion efficiency was $2.65\%$ at illumination intensity $100\;mW/cm^2$. Also we confirmed the optimum thickness ratio of the DA hetero-junction is about 1:2.

The effects of C60 & C70 on the nanostructure of ZnPc thin films during thermal process

  • Geum, Hui-Seong;Lee, Si-U;Choe, Min-Su;Kim, Jang-Ju;Lee, Hyeon-Hwi;Kim, Hyo-Jeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.141.1-141.1
    • /
    • 2016
  • 저분자 유기태양전지에 사용되는 zinc phthalocyanine(ZnPc)기반의 유기 2층 박막 구조인 ZnPc/C60와 ZnPc/C70에서, 열처리 온도에 따른 유기물층 계면의 변화, ZnPc 층의 격자상수와 응력 변화를 x-ray reflectivity와 GIWAXS 측정을 이용하여 연구하였다. C60 fullerene 층이 있는 ZnPc의 계면은 열처리 온도가 증가하면서 계면의 거칠기가 증가하였으나, C70 fullerene 층이 있을 때는 180도의 고온에서도 계면 거칠기가 증가하지 않고 안정한 상태를 유지하였다. Fullerene층이 있는 ZnPc는 단일 ZnPc 박막에 비해 압축 응력(compressive strain)을 더 받게 되나, 박막의 열처리 온도가 증가함에 따라 응력이 점진적으로 감소하게 된다. 특히 C70 fullerene 층이 있는 경우 ZnPc의 경우 180도에서 응력이 모두 사라진다. 이러한 fullerene 종류에 따른 박막의 응력과 계면의 안정성 특성은 표면 모폴로지에 영향을 주게 되어, ZnPC/C60 박막의 경우 ZnPc/C70에 비해 약 2배 큰 120nm의 grain을 갖게 된다.

  • PDF

Photonic Crystal Effect of Nano-Patterned PEDOT:PSS Layer and Its Application to Absorption Enhancement of ZnPc Thin Films

  • Han, Ji-Young;Ryu, Il-Whan;Park, Da-Som;Kwon, Hye-Min;Yim, Sang-Gyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.252-252
    • /
    • 2012
  • It is widely accepted that short exciton diffusion lengths of organic semiconductors with respect to the film thickness limit the charge (hole and electron) separation before excitons recombination in organic photovoltaic (OPV) cells. Therefore the efficient absorption of incident light within the thin active organic layer is of great importance to improve the power conversion efficiency (PCE) of the cells. In this work, we fabricated 2-dimensionally (2D) nano-patterned poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOST:PSS) layers using capillary phenomenon and nano-imprinting technology at the scale of several hundred nanometers. This 2D nano-patterned PEDOT:PSS layer exerted photonic crystal effect such as redirection of light paths and variation of light intensity at specified wavelengths. It is also expected that the consequently alternated light pass lengths and intensities change the absorption properties of zinc phthalocyanine (ZnPc) thin films grown on top of the nano-patterned PEDOT:PSS layer. The influence of conductivity and thickness of the PEDOT:PSS layer on the absorption properties of ZnPc thin films were also investigated.

  • PDF

Photovoltaic Properties of Tandem Structure Consisting of Quantum Dot Solar cell and Small Molecule Organic Solar cell

  • Jang, Jinwoong;Choi, Geunpyo;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.249.2-249.2
    • /
    • 2015
  • Connecting two or more sub-cells is a simple and effective way of improving power conversion efficiency (PCE) of solar cells, and the theoretical efficiency of this tandem cell is known to reach 85~88% of the sum of the sub-cell's efficiencies. There are two ways of connecting sub-cells in the tandem structure, i.e. parallel and series connection. The parallel connection can increase the short circuit current (Jsc) and the series connection can increase the open circuit voltage (Voc). Although various tandem structures have been studied, the full use of incident light and optimization of cell efficiency is still limited. In this work, we designed series tandem solar cells consisting of lead sulfide (PbS) quantum dots/zinc oxide-based QDSC and zinc phthalocyanine (ZnPc)/C60-based small molecule OSCs. It is expected that the loss of the incident light is minimized because the absorption range of the PbS quantum dots and ZnPc is significantly different, and the Voc increases according to the Kirchhoff's law.

  • PDF