• Title/Summary/Keyword: Zinc and Lead

Search Result 543, Processing Time 0.032 seconds

Monitoring of Heavy Metals in Fishes in Korea -As, Cd, Cu. Pb, Mn, Zn, Total Hg - (유통 중인 어류의 중금속 모니터링 - 비소, 카드뮴, 구리, 납, 망간, 아연, 총수은 -)

  • Kim, Hee-Yun;Kim, Seo-Young;Lee, Jin-Ha;Jang, Young-Mi;Lee, Myoung-Sook;Park, Jong-Seok;Lee, Kwang-Ho;Kim, Jin-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.353-359
    • /
    • 2007
  • This survey was carried out to estimate the heavy metal contents of fishes (531 ocean fishes and 80 freshwater fishes) sold in and around Korea from April to October in 2006 . The contents of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb), manganese (Mn), zinc (Zn) and mercury (Hg) were estimated by inductively coupled plasma-mass spectrometry (ICP-MS) and a mercury analyzer. The concentrations [mean (minimum-maximum) mg/kg] of heavy metals in the ocean fishes were as follows: As=2.523 (0.140-65.543), Cd=0.017 (0.000-0.108), Cu=0.569 (0.040-5.634), Pb=0.023 (0.000-0.323), Hg=0.068 (0.002-0.754), Mn=0.395 (0.016-4.651) and Zn=6.086 (0.529-34.729). The concentrations of heavy metals in the freshwater fishes were: As=0.370 (0.024-2.231), Cd=0.01l (ND-0.086), Cu=0.628 (0.003-1.962), Pb=0.026 (ND-0.423), Hg=0.058 (0.006-0.349), Mn=1.150 (0.069-7.230) and Zn=9.980 (3.463-82.737). The weekly intakes of Cd, Hg and Pb from fish were 0.9, 1.6 and 0.9%, respectively, as compared with the Provisional Tolerable Weekly Intake (PTWl) established by Joint FAO/WHO Expert Committee for food safety evaluation.

Green-blue Coloured Cu-Zn Hydrated Sulfate Minerals from Gukjeon Mine in Miryang (밀양 국전광산의 녹-청색 구리-아연 수화황산염 광물)

  • Koo, Hyo Jin;Jang, Jeong Kyu;Do, Jin Young;Jeong, Gi Young;Cho, Hyen Goo
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.473-483
    • /
    • 2018
  • Green-blue coloured supergene minerals are covering host rocks along the gallery wall in the Gukjeon mine, a lead - zinc skarn deposit located in Miryang, Gyeongsangnam-do. These minerals have been described as azurite or malachite, but recent study recognized that the green minerals are devilline and blue minerals are Cu-Zn hydrated sulfates, but exact identification and detailed mineral characteristics are also not well known. In this study, we divide green-blue minerals into five groups (GJG) according to their external features and conducted XRD and SEM analyzes in order to identify mineral name and clarify the mineralogical characteristics. GJG-1, a bright bluish green group, consists of brochantite and quartz and GJG-2, a pale green colour with easily crumbly, of schulenbergite and a small amount of gypsum. Although pale blue GJG-3 and glassy lustrous bluish green GJG-4 have the same mineral assemblages with serpierite and gypsum in spite of different colour and luster, gypsum content may control the physical properties. GJG-5 with a gel phase mixture of pale blue and dark blue mineral is comprised of hydrowoodwardite, glaucocerinite, bechererite, serpierite and gypsum. The six green-blue minerals from the Gukjeon mine could be classified by Cu:Zn ratio, (Si + Al) content, Si:Al ratio, and Ca content. The physico-chemical environment of mineral formation is considered to be controlled by the geochemical factors in the surrounding fluid, and it looks forward that the accurate formation environment will be revealed through additional research. This paper gives greater mineralogical significance in the first report of several hydrated sulfate such as serpierite, glaucocerinite and bechererite in Korea. It has also rarely been reported the occurrence of several Cu-Zn hydrated sulfate in the same deposit in the world.

Influence of Fly Ash Application on Content of Heavy Metal in the Soil I. Content Change by the Application Rate (석탄회(石炭灰) 시용(施用)이 토양중(土壤中) 중금속함량(重金屬含量)에 미치는 영향(影響) I. 시용량(施用量)에 따른 함량변화(含量變化))

  • Kim, Bok-Young;Lim, Sun-Uk;Park, Jong-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.2
    • /
    • pp.65-71
    • /
    • 1994
  • This study was conducted to investigate the influence of treatment of fly ash on heavy metal contents in the arable soils. Rice was cultivated on the two types of paddy field(clay loam and sandy loam soil) with 0, 4, 8, 12t/10a of anthracite fly ash and bituminous coal fly ash, respectively. And soybean was cultivated on the same types of upland field with those of 0, 3, 6, 9t/10a, respectively. At the harvest time, the heavy metal contents in surface and subsoil were investigated. The results were summarized as follows : 1. Anthracite fly ash. 1) In the paddy field of clay loam, the contents of Cu and Zn in the surface soil and Cd and Ni in the subsoil were increased with the increase of the amount of fly ash applied, but the others didn't show that tendency. 2) In the paddy field of sandy loam, only the content of Fe was increased in the surface and subsoils. 3) In the case of upland soil, the concentration of Ni and Cr in the surface soil and Cd in the subsoil were increased in the clay loam soil, and those of Cr in the surface soil and Pb in the subsoil were increased in the sandy loam soil. 2. Bituminous coal fly ash 1) In the paddy field of clay loam, the contents of Cu and Zn in the subsoil were increased with increase of the amount of fly ash applied, but in the case of sandy loam, those of Pb and Ni in the surface soil were increased. 2) In the upland soil of clay loam, the concentration of Ni in the surface soil and Pb in the subsoil were increased. 3) In case of upland soil of sandy loam, the contents of Cr and Fe were increased in the surface and subsoil, respectively, but those of Cu and Mn were increased in the both of the surface and subsoil.

  • PDF

Monitoring of Hazardous Metals Migrated from Home-Cooking Utensils (홈베이킹 조리기구에서 용출되는 유해금속 실태조사)

  • Park, Sung-Hee;Kim, Myung-Gil;Son, Mi-Hui;Seo, Mi-Young;Jang, Mi-Kyung;Ku, Eun-Jung;Chae, Sun-Young;Park, Yong-Bae
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.3
    • /
    • pp.264-270
    • /
    • 2021
  • In this study we investigated the elution level of lead (Pb), cadmium (Cd), arsenic (As), zinc (Zn), nickel (Ni), antimony (Sb), germanium (Ge), aluminum (Al) and hexavalent chromium (Cr6+) from 69 home-cooking utensils into a food stimulants. The results of migration testing according to the Korea standards and specifications for utensils, containers and packages showed values the allowable migrantion limits. Al was detected in all 7 utensil materials with the average concentration ranging from 0.002-5.989 mg/L. According to the migration conditions for (180℃, 30 min), the average concentration of Al in paper was 7.2 times higher than 25℃, 10 min (P<0.05). The results of migration testing at 180℃, 30 min were also below the allowable migrantion limits. When comparing with the provisional tolerable weekly intake (PTWI) of Al, the estimated weekly intakes (EWI) accounted for 0.000-0.045% for Al.

Influence of Fly Ash Application on Content of Heavy Metals in the Soil -III. Content Change in the Rice and Soybean by the Application Rate (석탄회(石炭灰) 시용(施用)이 토양중(土壤中) 중금속(重金屬) 함량(含量)에 미치는 영향(影響) -III. 쌀과 콩중(中)의 중금속(重金屬) 함량변화(含量變化))

  • Kim, Bok-Young;Jung, Goo-Bok;Lim, Sun-Uk;Park, Jong-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.220-225
    • /
    • 1994
  • This study was conducted to investigate the influence of treatment of fly ash on heavy metal contents in the grain. Rice was cultivated on the two types of paddy field, clay loam and sandy loam soil, with 0, 4, 8, 12t/10a of anthracite fly ash and bituminous coal fly ash, respectively. And soybean was cultivated on the same types of upland field with those of 0, 3, 6, 9t/10a, respectively. Also. rice and soybean were cultivated the same types of paddy and upland field with those ashes of 0, 12ton/10a and 0, 9ton/10a, yearly for three years. At the harvest time, the heavy metal contents in rice and soybean were Investigated. The results were summarized as follows : 1. Amount of application. 1) The contents of Cd in brown rice increased in the clay loam soil. Cr and Ni increased sandy loam soil with the application of anthracite fly ash. 2) The contents of Zn in rice increased in the sandy loam soil with the application of bituminous coal fly ash. 3) The contents of Cu in soybean increased with the application of anthracite and bituminous coal fly ash, but Zn, Pb, Cr and Ni increased only with the bituminous. 2. Successive application. 1) The contents of Cd in brown rice increased in the clay and sandy loam soil, however Cu, Zn, Ni, Cr and Fe increased only in sandy loam soil with the anthracite fly ash. 2) The contents of Cr in soybean were increased in the clay and sandy loam soil, but Cu, Fe increased only sandy loam soil with anthracite fly ash. 3) The contents of Cd, Zn, and Cr in brown rice increased in the clay and sandy loam soil, but those of Cu, Mn increased only in the sandy loam soil with application of bituminous. 4) The contents of Cd, Pb, and Cr in soybean increased in the sandy loam soil with the application of bituminous coal fly ash.

  • PDF

Genetic Environments of Hydrothermal Vein Deposits in the Pacitan District, East Java, Indonesia (인도네시아 동부자바 빠찌딴(Pacitan) 광화대 열수 맥상 광상의 성인 연구)

  • Choi, Seon-Gyu;So, Chil-Sup;Choi, Sang-Hoon;Han, Jin-Kyun
    • Economic and Environmental Geology
    • /
    • v.28 no.2
    • /
    • pp.109-121
    • /
    • 1995
  • The hydrothermal vein type deposits which comprise the Kasihan, Jompong and Gempol mineralized areas are primarily copper and zinc deposits, but they are also associated with lead and/or gold mineralization. The deposits occur within the Tertiary sedimentary and volcanic rocks in the Southern Mountain zone of the eastern Java island, Indonesia. Mineralization can be separated into two or three distinct stages (pre-and/or post- ore mineralization stages and main ore mineralization stage) which took place mainly along pre-existing fault breccia zones. The main phase of mineralization (the main ore stage) can be usually classified into three substages (early, middle and late) according to ore mineral assemblages, paragenesis, textures and their chemical compositions. Ore mineralogy and paragenesis of the three areas in the district are different from each other. Pyrite, pyrrhotite (/arsenopyrite), iron-rich (up to 20.5 mole % FeS) sphalerite and (Cu-)Pb-Bi sulfosalts are characteristic of the deposits in the Kasihan (/Jompong) area. On the other hand, pyrite + hematite + magnetite + iron-poor (2.7 to 3.6 mole % FeS) sphalerite assemblage is restricted to the Gempol area. Fluid inclusion data suggest that fluids of the main ore stage evolved from initial high temperatures (near $350^{\circ}C$) to later lower temperatures (near $200^{\circ}C$) with salinities ranging from 0.8 to 10.1 equiv. wt. percent NaCl. Each area represents a separate hydrothermal system: the mineralization at Kasihan and Jompong were largely due to early fluid boiling coupled with later cooling and dilution, whereas the mineralization at Gempol was mainly resulted from cooling and dilution by an influx of cooler meteoric waters. Fluid inclusion evidence of boiling indicates that pressures of ${\geq}95$ to 255 bars (${\geq}95$ bars for the Gempol area: $\approx$ 120 to 170 bars for the Jompong area: $\approx$ 140 to 255 bars for the Kasihan area) during portions of main ore stage mineralization. Equilibrium thermodynamic interpretation indicates that the evolution trends of the temperature versus fS2 variation of ore stage fluids in the Pacitan district follow two fashions: ore fluids at Kasihan and Jompong changed from the pyrite-pyrrhotite sulfidation stage towards pyritehematite- magnetite state, whereas those at Gempol evolved nearly along pyrite-hematite-magnetite reaction curve with decreasing temperature. The sulfur isotope compositions of sulfide minerals are consistent with an igneous source of sulfur with a ${\delta}^{34}S_{{\Sigma}s}$ value of about 3.3 per mil. The oxygen and hydrogen isotopic compositions of the fluids in each area indicate a progressive shift from the dominance of highly exchanged meteoric water at early hydrothermal systems towards an un- or less-exchanged meteoric water at later hydrothermal systems.

  • PDF

Long-term monitoring of heavy metal contents in paddy soils (논토양 중금속 함량의 장기변동 모니터링)

  • Kim, W.I.;Kim, M.S.;Roh, K.A.;Lee, J.S.;Yun, S.G.;Park, B.J.;Jung, G.B.;Kang, C.S.;Cho, K.R.;Ahn, M.S.;Choi, S.C.;Kim, H.J.;Kim, Y.S.;Nam, Y.K.;Choi, M.T.;Moon, Y.H.;Ahn, B.K.;Kim, H.K.;Kim, H.W.;Seo, Y.J.;Kim, J.S.;Choi, Y.J.;Lee, Y.H.;Lee, S.C.;Hwang, J.J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.3
    • /
    • pp.190-198
    • /
    • 2008
  • There is an increasing concern over heavy metal contamination of paddy soils and the subsequent translocation of heavy metals to rice. Objective is to monitor the status and long-term trend of heavy metal contamination in paddy soils, periodically. In 2007 survey, the average concentrations of As(arsenic), Cd(cadmium), Cu(copper), Ni(nickel), Pb(lead), and Zn(zinc) in 2,010 paddy soils nationwide were 0.87, 0.08, 3.33, 1.19, 4.95 and $4.67mg\;kg^{-1}$, respectively. Few sites, which were contaminated by As in 2003 and 2007 survey and by Ni in 1999 and 2007 survey, were over the threshold level for soil contamination designated by the Soil Environmental Conservation Act in Korea. Long-term change was shown that As, Ni, and Zn were gradually increased whereas Cd and Cu were decreased. In the distribution of extractable heavy metal contents, the modes of each heavy metal content were similar with the average contents of each heavy metals. Mean value of heavy metals except copper in paddy soils was higher than median value. It means that the downward distribution of heavy metal content in paddy rice was shown against normal distribution.

Evaluation of Elution Characteristics by Material for Kitchen Utensils - Focusing on the Metallic Kitchen Utensils (유통 주방기구의 재질별 용출 특성 평가 -금속제 주방기구 중심으로-)

  • Kim, Jae-Kwan;Im, Kyung-Sook;Kim, Myung-Gil;Park, Sung-Hee;Seo, Mi-Young;Lee, Yu-Na;Kim, Jung-Sun;Ku, Eun-Jung;Chae, Sun-Young;Park, Yong-Bae;Yoon, Mi-Hye
    • Journal of Food Hygiene and Safety
    • /
    • v.36 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • In this study we analyzed the elution rates of 11 metals from 82 metallic kitchen utensils purchased in the market. The elution frequency of the 11 types of metals was iron > aluminum > chromium, nickel > zinc > copper > lead > arsenic > antimony > stannum > cadmium. For metallic kitchen utensils, the elution rate of heavy metals was 7.3-93.9%, and the average elution concentration was 0.001-13.473 mg/L. The average elution concentration of heavy metals was ranged between none-detected (N. D.) to 30.473 mg/L for non-coated kitchen utensils and 0.000-10.005 mg/L for coated kitchen utensils. The average elution concentration of metals from domestic kitchen utensils ranged from 0.001-25.145 mg/L, and from 0.000-33.518 mg/L for imported kitchen utensils. In particular, aluminum was found to be high in domestic kitchen utensils while iron was high in imported kitchen utensils. The average elution concentration of heavy metals was N.D.-2.670 mg/L for stainless steel, N.D.- 31.575 mg/L for aluminum, and N.D.-307.737 mg/L for iron. The amount of transition to food after cooking was investigated.

Metallogeny on Gold-Silver in South Korea (남한(南韓)의 금(金)·은광화작용(銀鑛化作用)에 대(對)한 고찰(考察))

  • Kim, Won Jo
    • Economic and Environmental Geology
    • /
    • v.19 no.4
    • /
    • pp.243-264
    • /
    • 1986
  • This work is a metallogeny on gold-silver deposits in South Korea based on the close examination of the author's own data and a broad review of existing literature available. The metallogenic epochs in Korea are temporarily connected with the history of tectonism and igneous activities, and are identified as the Precambrian, Paleozoic, Jurassic to early Cretaceous, late Cretaceous to early Tertiary, and Quaternary epochs, whereas the metallogenic provinces are spatially associated with some of the felsic to intermediate igneous rocks, lacking mineralization related to basic and ultrabasic rocks. The metallogeny on the gold-silver deposits is mostly related to the granitic rocks intrusives. Epigenetic gold-silver mineralization in South Korea ranges in metallogenic epochs from Precambrian through Triassic, Jurassic and Cretaceous to Eocene (?), in genetic types from hypothermal through mesothermal and epithermal quartz-sulfide veins to volcanogenic stockworks, with some disseminated types. Reporting on metallic association from gold without silver, gold-silver, silver-gold, silver without gold, and gold or silver as a by-product from other metallic ores. The most representative genetic types and metal associations of gold-silver deposits are hydrothermal quartz veins associated with the Daebo and Bulgugsa granitic magmatism. The most closely associated paragenetic metallic minerals in gold-silver hydrothermal quartz-sulfide vein type deposits are: copper, lead, zinc, pyrite and arsenopyrite. More than 560 gold-silver mines are plotted in the distribution map grouped within the 10 different metallogenic provinces of South Korea. Specific mineralizations with related mineral association in both sulfides and gangues observed selected from 18 Korean and 8 Japanese Au-Ag deposits. The 7 selected individual gold-silver mines representing specific mineralization types are described in this report.

  • PDF

Iron, Manganese and Cadmium Contents of Sphalerites and their Genetical Implications to Hydrothermal Metallic Ore Deposits in Korea (국내산(國內産) 섬아연석(閃亞鉛石)의 Fe, Mn, Cd함량변화(含量變化)와 열수금속광상(熱水金屬鑛床) 성인(成因)과의 관련성(關聯性))

  • Chon, Hyo Taek;Shimazaki, Hidehiko
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.139-149
    • /
    • 1986
  • Compositional variation of sphalerites from various hydrothermal metallic ore deposits in Korea were investigated in mine and local, and regional scale. The sphalerites were partially analyzed for iron, manganese, and cadmium by using an electron probe microanalyzer(EPMA). The contents of iron and cadmium in sphalerites collected from the Weolam deposit of the No.1 Yeonhwa mine are not variable with increase of depth, but manganese content is highly variable. Sphalerites from lead-zinc deposits which are geologically associated with hypabyssal and effusive activity are characterized by high manganese (more than 1.0 MnS mole %) and low cadmium contents (less than 0.5 CdS mole %). Relatively manganese rich sphalerites are found in the deposits where sphalerites are enriched in iron content. Variation of cadmium content is very limited compared with that of manganese content. Sphalerites from most tungsten and some gold-silver deposits are remarkably high in cadmium content, but most of base metal and iron deposits are low in cadmium content. Cadmium content in sphalerites which occur in the metallic ore deposits genetically associated with plutonic activity shows a tendency to high variation. Available amounts of cadmium in sphalerites could be originated from the initial enrichment during the magmatic and postmagmatic processes.

  • PDF