• 제목/요약/키워드: Zinc Coated steel

검색결과 120건 처리시간 0.03초

자동차용 도금강재의 저항 점용접부 특성 (Resistance Spot Weldability of Coated Steels for Automobile Applications)

  • 김기철;차준호;박화순
    • 한국재료학회지
    • /
    • 제14권4호
    • /
    • pp.239-245
    • /
    • 2004
  • Resistance spot weldability of coated steels for automobile applications was investigated. Test samples were prepared from commercial products of 0.8 mm in thickness. Based on the tensile-shear test, surface quality examination and cracking behavior, it was clear that aluminized steels showed good weldability. Microstructural inspection revealed that the coated materials was piled up at the split zone in the welding of aluminized steels. It was also demonstrated that no weld crack was found in the aluminized steel weld metal even the welding was carried out with higher current. However, through thickness cracks were detected at the weld metal of zinc coated steel. Small particles were found on the crack surface of zinc coated steel weld metal. It was thought that zinc vapor played key role to form the weld crack.

아연코팅 철근콘크리트 보의 휨 거동 실험 연구 (An Experimental Study on Flexural Behavior of Beams Reinforced with Zinc-Coated Rebar)

  • 양인환;김경철
    • 콘크리트학회논문집
    • /
    • 제26권3호
    • /
    • pp.299-306
    • /
    • 2014
  • 콘크리트 구조물의 철근 부식 문제를 해결하기 위하여 코팅철근이 사용된다. 에폭시 코팅 철근에 비해 아연코팅철근의 콘크리트 보의 휨 거동 영향에 대한 자료는 거의 없는 실정이다. 이 연구의 목적은 아연코팅철근이 콘크리트 보의 휨 거동에 미치는 영향을 파악하는 데 있다. 아연코팅철근을 사용한 부재와 일반철근을 사용한 부재의 구조실험을 통하여 휨 거동 특성을 비교하였다. 실험변수로써 철근의 아연코팅 유무, 사용 철근비와 피복 두께를 고려하였다. 아연코팅철근 콘크리트 보의 균열패턴, 균열폭, 처짐 및 변형률 특성을 파악하였다. 아연코팅철근 콘크리트 보의 휨강도는 일반철근 콘크리트 보의 휨강도와 거의 차이가 나지 않는다. 철근표면의 아연코팅은 처짐, 균열폭 비교 결과에도 뚜렷한 영향을 미치지 않는다. 또한, 아연코팅철근 보와 일반철근 보의 하중-변형률 곡선은 비슷한 결과를 나타낸다. 따라서, 전반적으로 아연코팅철근의 사용은 일반철근을 사용할 때에 비해 콘크리트 보의 휨 거동에 악영향을 미치지는 않는 것으로 나타난다.

아연도금 강판의 $CO_2$ 레이저 용접에서 겹치기 용접의 FEM 시뮬레이션 (FEM Simulation of Lap Joint in $CO_2$ Laser Welding of Zn-coated Steel)

  • 김재도;조치용
    • Journal of Welding and Joining
    • /
    • 제16권1호
    • /
    • pp.52-62
    • /
    • 1998
  • Laser beam welding of zinc-coated steel, especially lap joints, has a problem of zinc vapor produced during welding which has a low vaporization temperature of 906.deg. C. It is lower than the melting temperature of steel (1500.deg. C). The high pressure formed by vaporization of zinc during laser welding splatters the molten pool and creates porosities in weld. During laser lap welds of zinc-coated steel sheets with CW CO$_{2}$ laser the gap size has been analyzed and simulated using a FEM. The simulation has been carried out in the range of gap aetween 0 and 0.16 mm. The vaporized zinc gas has effected to prevent heat from conducting toward the bottom of sheets. In vaporized zinc gas has effected to prevent heat from conducting toward the bottom of sheets. In the case of too small gap size, zinc gas has not ejected and existed between two sheets. Therefore heat was difficult to conduct from the upper sheet to lower sheet and the upper sheet could over-melted. In the case of large gap size the zinc gas has been prefectly ejected but only a part of lower sheet has melted. The optimum range of gap size in the lap welds of zinc-coated steel sheets has been calculated to be between 0.08 and 0.12 mm. According to the comparison of experiment, the simulation is proved to be acceptable and applicable to laser lap welds.

  • PDF

저탄소강의 알루미늄 도금조건에 따른 Nd:YAG 레이저 용접성 (Weldability of Low Carbon Steel with Al Coating Condition by Nd:YAG Laser)

  • 김종도;이정한;김숙환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.736-743
    • /
    • 2007
  • Laser welding has the advantage of high welding speed and Provides low heat distortion Thus laser welding is a very attractive process for joining thin steel sheet and surface treated steel sheet. And the major item in market for surface treated steel sheet is zinc coated steel. However. the laser welding of zinc coated steel is very difficult because of its low boiling point. Compared with zinc, on the other hand, aluminum has a high boiling point. Thus, laser weldability of aluminized steel is better than that of zinc coated steel. Moreover aluminized steel sheet is a material with excellent heat resistance, thermal reflection and corrosion resistance. The results of laser weldability of the aluminized steel for the full penetration welding will be described in this paper We focused on the investigation of the phenomenons caused by coating condition and behavior of aluminum in weld.

아연도금 강판의 $CO_2$ 레이저-TIG 하이브리드 용접에 관한 연구 Part 1 : 용접현상분석 (A Study on $CO_2$ Laser-TIG Hybrid Welding of Zinc-Coated Steel Sheet Part 1: Analysis of Welding Phenomena)

  • 김철희;최웅용;채현병;김정한;이세헌
    • Journal of Welding and Joining
    • /
    • 제24권4호
    • /
    • pp.22-26
    • /
    • 2006
  • In lap welding of zinc-coated steel, porosity formation is one of most significant weld defects, which is caused by zinc vapor generated between the steel sheets. Various solutions have been proposed in the past years but development of more effective method is a worthwhile subject to be investigated. In this study, autogenous laser welding and laser-TIG hybrid welding was applied to the lap welding of zinc-coated steel without gap, and weld pool behaviors were observed by using high speed camera and the porosity generation mechanism was analyzed. The weld defects were successfully eliminated by laser-TIG hybrid welding. This is because the leading TIG arc partially melted the upper sheet and vaporized/oxidized the coated zinc on the lapped surfaces prior to the trailing laser illuminating the specimen.

Effect of Sodium Chloride on Weight Loss of AA1100 Aluminum Alloy and SGACD Zinc coated Steel Lap Joint

  • Maulidin, Achmad;Kimapong, Kittipong
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.39-45
    • /
    • 2015
  • This research aims to study an effect of sodium chloride solution concentration on the corrosion rate of AA1100 aluminium alloy and SGACD zinc coated steel lap joint with a test duration of 30 days and a test temperature of $45^{\circ}$. The summarized results are as follows. Increase of the NaCl solution concentration increased the weight loss of Al, corrosion rate of Al, weight loss of Fe and also decreased the corrosion rate of Fe. Increase of the test duration affected to increase the weight loss and corrosion rate of Al and also decrease the weight loss and corrosion rate of Fe. The corrosion that was formed in a lap joint consisted of the uniform corrosion on the surface of the metals and the galvanic corrosion in the lap area of the joint. The maximum weight loss of AA 1100 aluminium and SGACD zinc coated steel that was occurred in the sodium chloride with 3.25% was 2.203% and 3.208%, respectively.. The maximum corrosion rate of AA 1100 aluminium and SGACD zinc coated steel that was occurred in 4.00% and 3.5% sodium chloride solution was 0.156 mm/year and 0.479 mm/year, respectively.

Anti-corrosive Effects of Multi-Walled Carbon Nano Tube and Zinc Particle Shapes on Zinc Ethyl Silicate Coated Carbon Steel

  • Jang, JiMan;Shon, MinYoung;Kwak, SamTak
    • Corrosion Science and Technology
    • /
    • 제15권1호
    • /
    • pp.1-5
    • /
    • 2016
  • Zinc ethyl silicate coatings containing multi walled carbon nanotubes (MWCNTs) were prepared, to which we added spherical and flake shaped zinc particles. The anti-corrosive effects of MWCNTs and zinc shapes on the zinc ethyl silicate coated carbon steel was examined, using electrochemical impedance spectroscopy and corrosion potential measurement. The results of EIS and corrosion potential measurement showed that the zinc ethyl silicate coated with flake shaped zinc particles and MWCNT showed lesser protection to corrosion. These outcomes were in agreement with previous results of corrosion potential and corrosion occurrence.

아연 코팅된 스틸코드와 접착증진제가 적용된 고무 Compound와의 접착특성 연구 (Studies on Adhesion Properties between Zinc-Coated Steel Cord and Adhesion Promoter-Containing Rubber Compound)

  • 고상민;최희석;손우정;강신정
    • 접착 및 계면
    • /
    • 제15권2호
    • /
    • pp.49-56
    • /
    • 2014
  • 본 연구에서는 아연 코팅 스틸코드와 접착증진제가 적용된 배합고무와의 접착 특성을 연구하였다. 접착증진제로는 cobalt boroacylate (코발트 염), resorcinol-formaldehyde resin (RF resin) 그리고 hexamethoxymethylmelamine (HMMM)을 사용하였다. 코발트 염이 첨가된 배합고무에서는 코발트 염이 아연 코팅 스틸코드 표면에서 아연 황화물 성장을 촉진시켜 코발트 염이 포함되지 않은 배합고에 비하여 pullout force가 증가하는 것을 확인하였다. 또한 코발트 염, RF resin과 HMMM을 모두 적용한 배합고무의 경우, 코발트 염은 아연 황화물 성장을 촉진시키고, RF resin과 HMMM은 배합고무의 modulus를 높여 고무 matrix로 성장한 아연 황화물을 더 강하게 interlocking하기 때문에 pullout force와 스틸코드의 고무 부착율이 가장 높게 나타난다는 것을 확인하였다.

Practical Experiences with Corrosion Protection of Water Intake Gates in Mekong River

  • Phong, Truong Hong;Tru, Nguyen Nhi;Han, Le Quang
    • Corrosion Science and Technology
    • /
    • 제7권6호
    • /
    • pp.328-331
    • /
    • 2008
  • Corrosion behaviour of water intake gate steel structures with different protective measures was investigated. Five material alternatives were taken for investigation, including: imported and recycled stainless steel, carbon steel with hot zinc spraying, painting and composite coatings. Results of corrosion rate for carbon steel, SUS 304, hot zinc spray coats in three water systems of Mekong river basin (saline, blackish and fresh) were also presented. Corrosion rate of carbon steel decreased with decreasing salinity in the investigated water environments. Meanwhile, these values for zinc coated steel, behaved by another way. Environmental data for these systems were filed and discussed in relation with corrosion characteristics. Method of Life Cycle Assessment (LCA) was applied in materials selection for water intake gate construction. From point of Life Cycle Cost (LCA) the following ranking was obtained: Zinc sprayed steel < Recycled stainless steel < Composite coated steel < Painting steel < SUS 304 From investigated results, hot zinc spray coating has been applied as protective measure for steel structures of water intake systems in Mekong river basin.

레이저용접에서 알루미늄 도금량이 용접성에 미치는 영향 (Effect of Coating Weight on the Laser Weldability in the Welding of Aluminized Steels)

  • 김기철;차준호
    • 한국재료학회지
    • /
    • 제14권1호
    • /
    • pp.1-8
    • /
    • 2004
  • Laser weldability of aluminized steels for deep drawing application has been investigated. Test coupons for Nd:YAG laser welding and $CO_2$ laser welding were prepared trom the commercial steels. According to the test results, total penetration and back bead width of aluminized steels were sensitive to the welding conditions. Bead width at the half thickness of the overlap joint, however, was rather constant. Laser weldability of aluminized steels was superior to that of zinc coated steel. Weld microstructure revealed that overlap zone adjacent to the fusion line was filled with coated materials, which was thought to be desirable to protect weld from crevice corrosion. The aluminum coated materials was also found in the weld metal. Practically no spattering was observed in the laser welding of aluminized steels even when the welding was performed without joint gap. In the welding of zinc coated steel, however, spattering was so severe that it was difficult to get the acceptable weld. Bead quality of aluminized steel laser weld was smooth and stable.