• Title/Summary/Keyword: ZigBee RF

Search Result 37, Processing Time 0.022 seconds

A 900 MHz ZigBee CMOS RF Transceiver Using Switchless Matching Network (무스위치 정합 네트워크를 이용한 900 MHz ZigBee CMOS RF 송수신기)

  • Jang, Won Il;Eo, Yun Seong;Park, Hyung Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.8
    • /
    • pp.610-618
    • /
    • 2017
  • This paper presents a 868/915 MHz CMOS RF transceiver for the ZigBee application. Using a switchless matching network, the off chip switch is removed to achieve the low cost RF transceiver, and by the elimination of the switch's insertion loss we can achieve the benefits for the RF receiver's noise figure and transmitter's power efficiency at the given output power. The receiver is composed of low-noise amplifier, mixer, and baseband analog(BBA) circuit. The transmitter is composed of BBA, mixer, and driver amplifier. And, the integer N type frequency synthesizer is designed. The proposed ZigBee RF full transceiver is implemented on the $0.18{\mu}m$ CMOS technology. Measurement results show that the maximum gain and the noise figure of the receiver are 97.6 dB and 6.8 dB, respectively. The receiver consumes 32 mA in the receiver mode and the transmitter 33 mA in the transmission mode.

Minimizing the power consumption of ZigBee RF4CE Certified Platform

  • Jung, Taek-Soo;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.287-292
    • /
    • 2011
  • The RF4Control stack is used with microcontrollers and IEEE(R) 802.15.4 transceivers. This paper explains the setup and power consumption measurements for the transceiver based remote controller and target node. It is assumed the reader of this paper has knowledge about RF4CE. The current consumption measurements are made using the ZigBee Platform included with the RF4Control stack. he current consumption measurements are presented, and battery life time is calculated for an remote controller. Note that the results presented in this paper are intended as a guideline only. A variety of factors will influence the battery life calculation and final measurements and calculations should be performed on ZigBee RF4CE Certified Platform.

Suggestion for method to improve power consumption of the ZigBee RF4CE platform

  • Woo, Eun-Ju;Moon, Yu-Sung;Kim, Jung-Won
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.476-479
    • /
    • 2018
  • This paper proposes a method for reducing the amount of current consumption by the transceiver based remote control and the ZigBee RF4CE network layer step. We have studied how to improve power efficiency at short transition time through duty rate management. Also, comparing the measured current consumption before and after the improvement, we confirmed the correlation between the data transmission speed improvement and the current reduction.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.

Implementation of a CMOS RF Transceiver for 900MHz ZigBee Applications (ZigBee 응용을 위한 900MHz CMOS RF 송.수신기 구현)

  • Kwon, J.K.;Park, K.Y.;Choi, Woo-Young;Oh, W.S.
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.175-184
    • /
    • 2006
  • In this paper, we describe a 900MHz CMOS RF transceiver using an ISM band for ZigBee applications. The architecture of the designed rx front-end, which consists of a low noise amplifier, a down-mixer, a programmable gain amplifier and a band pass filter. And the tx front-end, which consists of a band pass filter, a programmable gain amplifier, an up-mixer and a drive amplifier. A low-if topology is adapted for transceiver architecture, and the total current consumption is reduced by using a low power topology. Entire transceiver is verified by means of post-layout simulation and is implemented in 0.18um RF CMOS technology. The fabricated chip demonstrate the measured results of -92dBm minimum rx input level and 0dBm maximum tx output level. Entire power consumption is 32mW(@1.8VDD). Die area is $2.3mm{\times}2.5mm$ including ESD protection diode pads.

A High Linear And Low Noise COMOS RF Front-End For 2.4GHz ZigBee Applications (지그비(ZigBee) 응용을 위한 고선형, 저잡음 2.4GHz CMOS RF 프론트-엔드(Front-End))

  • Lee, Seung-Min;Jung, Chun-Sik;Kim, Young-Jin;Baek, Dong-Hyun
    • Journal of Advanced Navigation Technology
    • /
    • v.12 no.6
    • /
    • pp.604-610
    • /
    • 2008
  • A 2.4 GHz CMOS RF front-end using for ZigBee application is described The front-end consists of a low noise amplifier and a down-mixer and uses a 2 MHz IF frequency. A common source with resistive feedback and an inductive degeneration are adopted for a low noise amplifier, and a 20 dB gain control step is digitally controlled. A passive mixer for low current consumption is employed. The RF front-end is implemented in 0.18 ${\mu}m$IP6M CMOS process. The measured performance is 4.44 dB NF and -6.5 dBm IIP3 while consuming 3.28 mA current from a 1.8 V supply.

  • PDF

System Design Considerations for a ZigBee RF Receiver with regard to Coexistence with Wireless Devices in the2.4GHz ISM-band

  • Seo, Hae-Moon;Park, Yong-Kuk;Park, Woo-Chool;Kim, Dong-Su;Lee, Myung-Soo;Kim, Hyeong-Seok;Choi, Pyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.2 no.1
    • /
    • pp.37-49
    • /
    • 2008
  • At the present time the task of designing a highly integrated ZigBee radio frequency (RF) receiver with an excellent coexistence performance is still very demanding and challenging. This paper presents a number of system issues and design considerations for a ZigBee RF receiver, namely IEEE 802.15.4, for coexistence with wireless devices in the 2.4-GHz ISM-band. With regard to IEEE 802.15.4, the paper analyzes receiver performance requirements for; system noise figure (NF), system third-order intercept point (system-IIP3), local oscillator phase noise and selectivity. Based on some assumptions, the paper illustrates the relationship between minimum detectable signal (MDS) and various situations that involve the effects of electromagnetic interference generated by other wireless devices. We infer the necessity of much more stringent specification requirements than the published standard for various wireless communication field environments

Realization of Water AMR Network using ZigBee Protocol (ZigBee 무선표준을 이용한 상수도 원격검침 네트워크 구현)

  • Kwon, Jong-Won;Park, Yong-Man;Odgerel, Odgerel;Kim, Hie-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.168-170
    • /
    • 2006
  • In this paper, authors realize water AMR(Automatic Meter Reading) network using low power ZigBee protocol included routing ability for improving wireless communitation error detection and network range. ZigBee wireless standard is an important standard of the field related Ubiquitous industry and recently has application to Home-Network. It's special features are to spend low power and to include routing ability each terminator. Because of these features, authors realize water AMR system on Embedded system using ZigBee protocol for applying to transfer data between a water meter and RF module equipped with a water meter in each house.

  • PDF

Design of Distributed Band Pass Filter for 900MHz ZigBee System applications (900MHz ZigBee System 응용 분포소자형 Band Pass Filter 설계)

  • Lee, Joong-Keun;Yoo, Chan-Sei;Kim, Dong-Su;Won, Kwang-Ho;Lee, Woo-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.163-166
    • /
    • 2005
  • Multilayer LTCC technology enables RF modules to be reduced dramatically by taking advantage of the three dimension flexibility. Compared to a conventional two dimensional PCB, LTCC allows higher density, reduced size, and lower cost. In this research, BPF based on LTCC for 900MHz ZigBee application was implemented which can replace SAW filter with using the material of the Dupont9599's dielectric constant 7.8. And distributed baud pass filter for 900MHz ZigBee system applications is presented. Using resonator stripline and capacitance, 2nd order band pass filter was designed. Adjusting resonator's length and capacitance is easy to tune at accurate center frequency by shifting band because ZigBee system is using narrow bandwidth, $902MHz^{\sim}928MHz$. Also resonator has no limitation in space, so reducing size is possibile. Designed filter had I.L. 2.8dB at 915MHz and attenuation at 815MHz, 1015MHz was 16dB, 15dB, respectively. Therefore, the sharpe cut-off and good insertion loss for ZigBee system application.

  • PDF