• Title/Summary/Keyword: Zero-voltage transition (ZVT)

Search Result 74, Processing Time 0.031 seconds

The Experimental Consideration of ZVT-PWM AC-DC Converter using Active Auxiliary Resonant Snubber (액티브 보조 공진 스너버를 이용한 ZVT-PWM AC-DC 컨버터의 실험적 고찰)

  • 서기영;문상필;김주용;박진민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.2
    • /
    • pp.75-82
    • /
    • 2004
  • Zero Voltage Transition Pulse Width Modulation (ZVT-PWM) converter with active snubber circuit was proposed on this paper. The converter that has been proposed snubber circuit can be operated at the condition of light load range, and this converter is turned on and off near by Zero Voltage Switching (ZVS) or Zero Current Switching (ZCS). If the stress of voltage and current are not occurred at the main switch and main diode, we subjected the allowed level of voltage and current on the auxiliary switch and auxiliary diodes. By proposed 750[W], 80[KHz] PWM boost converter to apply soft switching on the power of total output, the loss of main switch to compare with hard switching was reduced about 27[%], and the loss of total circuit was reduced about 36[%]. The total efficiency was increased about 6[%] to compare with general converter.

ZVT Series Capacitor Interleaved Buck Converter with High Step-Down Conversion Ratio

  • Chen, Zhangyong;Chen, Yong;Jiang, Wei;Yan, Tiesheng
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.846-857
    • /
    • 2019
  • Voltage step-down converters are very popular in distributed power systems, voltage regular modules, electric vehicles, etc. However, a high step-down voltage ratio is required in many applications to prevent the traditional buck converter from operating at extreme duty cycles. In this paper, a series capacitor interleaved buck converter with a soft switching technique is proposed. The DC voltage ratio of the proposed converter is half that of the traditional buck converter and the voltage stress across the one main switch and the diodes is reduced. Moreover, by paralleling the series connected auxiliary switch and the auxiliary inductor with the main inductor, zero voltage transition (ZVT) of the main switches can be obtained without increasing the voltage or current stress of the main power switches. In addition, zero current turned-on and zero current switching (ZCS) of the auxiliary switches can be achieved. Furthermore, owing to the presence of the auxiliary inductor, the turned-off rate of the output diodes can be limited and the reverse-recovery switching losses of the diodes can be reduced. Thus, the efficiency of the proposed converter can be improved. The DC voltage gain ratio, soft switching conditions and a design guideline for the critical parameters are given in this paper. A loss analysis of the proposed converter is shown to demonstrate its advantages over traditional converter topologies. Finally, experimental results obtained from a 100V/10V prototype are presented to verify the analysis of the proposed converter.

A Novel Soft Switched Auxiliary Resonant Circuit of a PFC ZVT-PWM Boost Converter for an Integrated Multi-chips Power Module Fabrication (PFC ZVT-PWM 승압형 컨버터에서 통합형 멀티칩 전력 모듈 제조를 위한 개선된 소프트 스위치 보조 공진 회로)

  • Kim, Yong-Wook;Kim, Rae-Young;Soh, Jae-Hwan;Choi, Ki-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.458-465
    • /
    • 2013
  • This paper proposes a novel soft-switched auxiliary resonant circuit to provide a Zero-Voltage-Transition at turn-on for a conventional PWM boost converter in a PFC application. The proposed auxiliary circuit enables a main switch of the boost converter to turn on under a zero voltage switching condition and simultaneously achieves both soft-switched turn-on and turn-off. Moreover, for the purpose of an intelligent multi-chip power module fabrication, the proposed circuit is designed to satisfy several design constraints including space saving, low cost, and easy fabrication. As a result, the circuit is easily realized by a low rated MOSFET and a small inductor. Detail operation and the circuit waveform are theoretically explained and then simulation and experimental results are provided based on a 1.8 kW prototype PFC converter in order to verify the effectiveness of the proposed circuit.

A Study on the PFC-Inverter with the ZVT-Switching Method (ZVT 스위칭 기법을 적용한 PFC-인버터)

  • 이성룡;전칠환;권순신
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.560-567
    • /
    • 2000
  • A soft-switching PFC-Inverter for using AC motor drive such as the inverter air-conditioner with single phase medium size is proposed. In order to improve the power factor and the efficiency, in this paper, the ZVT topoloty in the conventional PFC-Inverter is adopted. So, the operation mode of the proposed ZVT PFC-Inverter is analyzed and the optimum circuit is designed. At last, the PSPICE, PSIM simulation and experiment results are presented in order to verify the validity of the proposed circuit.

  • PDF

A Study on the ZVT DC/DC Boost Converter using Active Snubber (능동스너버를 이용한 ZVT DC/DC Boost 컨버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kim, Pill-Soo;Lee, Eun-Young
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.186-189
    • /
    • 2002
  • This paper presents an improved ZVT(Zero Voltage Transition) DC/DC Boost Converter using Active Snubber. The Conventional ZVT PWM Boost Converter is improved to minimize the switching loss of auxiliary switch using the minimum number of the components. In this thesis, advantage and disadvantages of Conventional ZVT Converter using a auxiliary resonant circuit is discussed. Then Improved ZVT soft switching converter will be discussed. In comparison a previous ZVT converter, The proposed converter reduces turn-off switching loss of the auxiliary switch Therefore, the proposed converter has a high efficiency by active snubber. The prototype of 100kHz, 2kW system was implemented to show the improved performance.

  • PDF

A Study on the ZVT Boost Converter with reduced Auxiliary switch losses (ZVT Boost 컨버터의 보조스위치 손실 저감에 관한 연구)

  • Jung, Myung-Sub;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Kwon, Soon-Do;Lee, Byung-Song
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1428-1431
    • /
    • 2005
  • This paper presents an improved ZVT(Zero Voltage Transition) DC/DC Boost Converter using Active Snubber. The Conventional ZVT PWM Boost Converter is improved to minimize the switching loss of auxiliary switch using the minimum number of the components. In this thesis, advantage and disadvantages of Conventional ZVT Converter using a auxiliary resonant circuit is discussed. Then Improved ZVT soft switching converter will be discussed. In comparison a previous ZVT converter, the proposed converter reduces turn-off switching loss of the auxiliary switch. Therefore, the proposed converter has a high efficiency by active snubber. To show the superiority of this converter is verified through the experiment with a 640W, 100kHz prototype converter.

  • PDF

New ZVZCT Bidirectional DC-DC Converter Using Coupled Inductors

  • Qian, Wei;Zhang, Xi;Li, Zhe;Jin, Wenqiang;Wiedemann, Jochen
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.11-23
    • /
    • 2019
  • In this study, a novel zero voltage zero current transition (ZVZCT) bidirectional DC-DC converter is proposed by employing coupled inductors. This converter can turn the main switch on at ZVZCT and it can turn it off with zero voltage switching (ZVS) for both the boost and buck modes. These characteristics are obtained by using a simple auxiliary sub-circuit regardless of the power flow direction. In the boost mode, the auxiliary switch achieves zero current switching (ZCS) turn-on and ZVS turn off. Due to the coupling inductors, this converter can make further efficiency improvements because the resonant energy in the capacitor or inductor can be transferred to the load. The main diode operates with ZVT turn-on and ZCS turn-off in the boost mode. For the buck mode, there is a releasing circuit to conduct the currents generated by the magnetic flux leakage to the output. The auxiliary switch turns on with ZCS and it turns off with ZVT. The main diode also turns on with ZVT and turns off with ZCS. The design method and operation principles of the converter are discussed. A 500 W experimental prototype has been built and verified by experimental results.

A Study on the Average Current-Mode Control AC/DC ZVT-Boost Converter with Active-Clamp Method (능동 클램프 방식을 이용한 AC/DC ZVT 승압형 컨버터의 평균전류모드 제어에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kim, Pill-Soo;Lim, Nam-Hyuk;Yoon, Suk-Ho;Chang, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1005-1008
    • /
    • 2001
  • This paper presents average current-mode control AC/DC ZVT(Zero Voltage Transition) Boost Converter. This boost converter perceives feed forward signal of input and feedback signal of output for average current-mode control proposed converter employs active-clamp method for ZVT. This converter gives the good PFC(Power Factor Correction), low line current hormonic distortions and tight output voltage regulations. This converter also has a high efficiency by active-clamp method. The principle of operation, feature, and design considerations are illustrated and verified through the experiment with a 150W, 120kHz prototype converter.

  • PDF

A New Zero Voltage Transition Bridgeless PFC with Reduced Conduction Losses

  • Mahdavi, Mohammad;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.708-717
    • /
    • 2009
  • In this paper a new zero voltage transition PWM bridgeless PFC is introduced. The auxiliary circuit provides soft switching condition for all semiconductor devices. Also, in the resonant path of the auxiliary circuit, only two semiconductor devices exist. Therefore the resonant conduction losses are low. Furthermore, the auxiliary circuit semiconductor elements consist of only one diode and one switch. The proposed auxiliary circuit is applied to a bridgeless PFC converter to further reduce conduction and switching losses. In this paper, the operating modes of this converter are explained and the resulting ideal and simulation waveforms are shown. The presented experimental results justify the theoretical analysis.

Isolated ZVT Interleaved Boost Converter for High Step-up Applications (고전압 적용을 위한 절연된 ZVT Interleaved 부스트 컨버터)

  • Kim, Min-Sub;Lee, Kui-Jun;Kim, Rae-Young;Hyun, Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.357-358
    • /
    • 2010
  • An interleaved operation of isolated boost converter system has become a very attractive solution in order to convert from low input voltage (30 ~ 50V) of distributed power sources such as photovoltaic and fuel cells to high output voltage (380V/760V) required in grid-connected power conversion applications. In this paper, we have proposed zero voltage transition(ZVT) interleaved boost converter using a single resonant inductor.

  • PDF