• Title/Summary/Keyword: Zero-stress temperature

Search Result 43, Processing Time 0.024 seconds

Heat Transfer Behavior of Viscoelastic Fluid including buoyancy effect with Modified Temperature Dependent Viscosity Model in a Rectangular Duct (수정점도 모델을 이용한 직사각형 덕트에서의 부력을 고려한 점탄성 유체의 열전달 특성)

  • Sohn C. H.;Jang J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.192-198
    • /
    • 1999
  • The present study proposes modified temperature-dependent non-Newtonian viscosity model and investigates flow characters and heat transfer enhancement of the viscoelastic non-Newtonian fluid in a 2:1 rectangular duct. The proposed modified temperature dependent viscosity model has non-zero value near the high temperature and high shear rate region while on the existing viscosity models have zero value. Two versions of thermal boundary conditions involving difference combination of heated walls and adiabatic walls are analyzed in this study. The combined effect of temperature dependent viscosity, buoyancy, and secondary flow caused by second normal stress difference are ail considered. The Reiner-Rivlin model is adopted as a viscoelastic fluid model to simulate the secondary flow caused by second normal stress difference. Calculated Nusselt numbers by the modified temperature-dependent viscosity model gives under prediction than the existing temperature-dependent viscosity model in the regions of thermally developed with same secondary normal stress difference coefficients with experimental results in the regions of thermally developed. The heat transfer enhancement of the viscoelastic fluid in a 2:1 rectangular duct is highly dependent on the secondary flow caused by the magnitude of second normal stress difference.

  • PDF

Low-temperature Mechanical Behavior of Super Duplex Stainless Steel Considering High Temperature Environment (고온 환경의 영향을 고려한 슈퍼듀플렉스 강의 저온 기계적 거동 평가)

  • Kim, Myung-Soo;Jung, Won-Do;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.306-313
    • /
    • 2014
  • Super duplex stainless steels (sDSS) are excellent for use under severely corrosive conditions such as offshore and marine applications like pipelines and flanges. sDSS has better mechanical properties and corrosion resistance than the standard duplex stainless steel (DSS) but it is easier for a sigma phase to appear, which depresses the mechanical property and corrosion resistance, compared to DSS, because sDSS has a higher alloy element than DSS. In addition, sDSS has a feeble ductile-brittle transition temperature (DBTT) because it has a 50% ferrite microstructure. In the actual operating environment, sDSS would be thermally affected by welding and a sub-zero temperature environment. This study analyzed how precipitated sDSS behaves at a sub-zero temperature through annealing heat treatment and a sub-zero tensile test. Six types of specimens with annealing times of up to 60 min were tested in a sub-zero chamber. According to the experimental results, an increase in the annealing time reduced the elongation of sDSS, and a decrease in the tensile test temperature raises the flow stress and tensile stress. In particular, the elongation of specimens annealed for 15 min and 30 min was clearly lowered with a decrease in the tensile test temperature because of the increasing sigma phase fraction ratio.

Specification of Governing Factors for High Accurate Prediction of Welding Distortion (용접변형 고정도 예측을 위한 지배인자의 특정)

  • Lee, Jae-Yik;Chang, Kyong-Ho;Kim, You-Chul
    • Journal of Welding and Joining
    • /
    • v.31 no.5
    • /
    • pp.1-6
    • /
    • 2013
  • In carrying out the elastic-plastic analysis, four conditions (equilibrium equation, constitutive equation, condition of compatibility and yield condition) should be satisfied. In welding, the temperature largely changed from a melting temperature to a room temperature. So, yield stress of materials largely changed, too. In particular, yield stress becomes about zero over $700^{\circ}C$. The analysis should be carried out under the condition that equivalent stress generated in temperature increment ${\Delta}T$ did not exceed yield stress of materials at high temperature over $700^{\circ}C$. It should be sufficiently recognized that the obtained results were not reliable if this condition was not satisfied.

A Study of Low Cycle Fatigue Characteristics of 11.7Cr-1.1Mo Heat Resisting Steel with Mean Stress (Mean Stress를 고려한 11.7Cr-1.1Mo강의 고온저주기 피로특성에 관한 연구)

  • Hong, Sang-Hyuk;Hong, Chun-Hyi;Lee, Hyun-Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.133-141
    • /
    • 2006
  • The Low cycle fatigue behavior of 11.7Cr-1.1Mo heat-resisting steel has been investigated under strain-controlled conditions with mean stresses at room temperature and $300^{\circ}C$. For the tensile mean stress test, the initial high tensile mean stress generally relaxed to zero at room temperature, however, at $300^{\circ}C$ initial tensile mean stress relaxed to compressive mean stress. Low cycle fatigue lives under mean stress conditions are usually correlated using modifications to the strain-life approach. Based on the fatigue test results from different stain ratio of -1, 0, 0.5, and 0.75 at room temperature and $300^{\circ}C$, the fatigue damage of the steel was represented by using cyclic strain energy density. Total strain energy density considering mean stress indicated well better than not considering mean stress at $300^{\circ}C$. Predicted fatigue life using Smith-Watson-Topper's parameter correlated fairly well with the experimental life at $300^{\circ}C$.

Temperature Patterns in Concrete Pavements at Very Early Ages (콘크리트 도로 포장의 초기 온도 분포 분석)

  • Kim, Seong-Min;Nam, Jeong-Hee
    • International Journal of Highway Engineering
    • /
    • v.7 no.3 s.25
    • /
    • pp.79-91
    • /
    • 2005
  • The temperature patterns in Portland cement concrete (PCC) pavements were measured and comprehensively analyzed from the beginning of the concrete placement based on the temperature measurement technique developed using innovative and inexpensive temperature measurement sensors. The temperature measurements in PCC pavements were taken at several different locations forvarious slab thicknesses. The concrete temperature patterns in the vertical and longitudinal directions of the pavement were analyzed and the effects of the pavement surface reflectivity, shading, and covering on the concrete temperatures were evaluated. The results of this study showed that the significant differences in the maximum concrete temperatures on the placement day were observed according to the concrete placement time. Since the zero-stress temperature is a function of the maximum concrete temperature on the placement day, the placement time would be an important factor that affects the behavior and performance of concrete pavements. The surface conditions of the pavement, such as the surface color, shading, and covering also affected the temperature patterns in PCC pavements significantly.

  • PDF

Residual Stress and Growth Orientation in $Y_2O_3$ Thin Films Deposited by Reactive Sputtering (반응 스퍼터링법으로 제조한 $Y_2O_3$ 박막의 잔류응력과 성장 방향성)

  • 최한메;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.8
    • /
    • pp.950-956
    • /
    • 1995
  • Y2O3 thin films were deposited by reactive sputtering of Y target in Ar and O2 gas mixture. Residual stress was measrued by sin2$\psi$ method of x-ray diffraction (XRD) and growth orientation was examined by measuring the relative intensity of (400) plane and (222) plane of Y2O3 films. In the case that Y2O3 films were deposited at 40$0^{\circ}C$ and at low working pressure below 0.05 torr the film had large compressive stress and (111) plane orientation. At working pressure of about 0.10 torr the film had small compressive stress and (100) orientation. Above working pressure of 0.20 torr, the films had nearly zero stress and random orientation. In the case that the (111) oriented film deposited at low working pressure below 0.05 torr, as substrate temperature decreased, (111) orientation increased. In the case the film, with (100) orientation, deposited at working pressure of about 0.10 torr, (100) orientation increased with decresing substrate temperature. These relationship of residual stress and growth orientation can be explained by the relationship of surface energy and strain energy.

  • PDF

HEAT-UP AND COOL-DOWN TEMPERATURE-DEPENDENT HYDRIDE REORIENTATION BEHAVIORS IN ZIRCONIUM ALLOY CLADDING TUBES

  • Won, Ju-Jin;Kim, Myeong-Su;Kim, Kyu-Tae
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.681-688
    • /
    • 2014
  • Hydride reorientation behaviors of PWR cladding tubes under typical interim dry storage conditions were investigated with the use of as-received 250 and 485ppm hydrogen-charged Zr-Nb alloy cladding tubes. In order to evaluate the effect of typical cool-down processes on the radial hydride precipitation, two terminal heat-up temperatures of 300 and $400^{\circ}C$, as well as two terminal cool-down temperatures of 200 and $300^{\circ}C$, were considered. In addition, two cooling rates of 2.5 and $8.0^{\circ}C/min$ during the cool-down processes were taken into account along with zero stress or a tensile hoop stress of 150MPa. It was found that the 250ppm hydrogen-charged specimen experiencing the higher terminal heat-up temperature and the lower terminal cool-down temperature generated the highest number of radial hydrides during the cool-down process under 150MPa hoop tensile stress, which may be explained by terminal solid hydrogen solubilities for precipitation, and dissolution and remaining circumferential hydrides at the terminal heat-up temperatures. In addition, the slower cool-down rate generates the larger number of radial hydrides due to a cooling rate-dependent, longer residence time at a relatively high temperature that can accelerate the radial hydride nucleation and growth.

Numerical analysis of turbulent thermal convection between two flat plates (두 평판 사이의 난류 열대류의 수치해석)

  • 이장희;윤효철;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.137-151
    • /
    • 1988
  • Thurbulent thermal convection between two plates, bottom plate is at higher temperature $T_{h}$ and the upper plate is at lower temperature $T_{i}$ is numerically investigated. Model equations are abridged Reynolds stress equations; full Reynolds stress equations are simplified to yield algebraic relations in case of mean square velocity fluctuations in vertical and horizontal directions. Boundary conditions for turbulent kinetic energy k and mean square temperature variance .thera.$^{2}$oner bar at the plate surfaces are set to be zero and those of dissipation rate of turbulent kinetic energy .epsilon. and dissipation rate of mean square temperature variance .epsilon.$_{\theta}$ are assumed at first grid point nearest to the boundary surfaces, whose values are approximated by inviscid estimates. Results show that temperature profiles are in good agreement with experimental data except transition region, in which temperature is over-predicted. Such discrepancy becomes larger as the Rayleigh number becomes smaller. Nusselt numbers, which are calculated from the temperature gradients at the boundary surfaces, are also in good agreement with experimental data.a.a.

Steel Design of Continuously Reinforced Concrete Pavement based on the Width of Transverse Crack (횡방향 균열 폭에 기초한 연속철근 콘크리트포장의 철근설계)

  • Kim, Kyeong-Jin;Kim, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.106-114
    • /
    • 2009
  • The steel design based on the width of transverse crack which is the major factor to affect a long-term performance of continuously reinforced concrete pavement was developed. For this study, twenty-one cities of Texas were selected and the temperature data was collected at those locations during the past ten years. From the data, zero-stress temperatures were calculated by the PavePro program and the widths of transverse crack were analyzed by the CRCP program. The variables used to this numerical analysis were slab thickness, coefficient of thermal expansion of concrete, steel ratio, and design temperature. The total of 448 factorial runs were made and the regression analysis was performed using the results. Steel ratios from the regression equations were backcalculated and a steel design table was proposed.

Prediction of Concrete Temperature and Its Effects on Continuously Reinforcement Concrete Pavement Behavior at Early Ages (초기재령에서 연속철근콘크리트포장 거동에 콘크리트 온도의 영향과 예측)

  • Kim Dong-Ho;Choi Seong-Cheol;Won Moon-Cheol
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.55-62
    • /
    • 2006
  • Transverse cracks in continuously reinforced concrete pavement (CRCP) occur at early ages due to temperature and moisture variations. The width and spacing of transverse cracks have a significant effect on pavement performance such as load transfer efficiency and punchout development. Also, crack widths in CRCP depend on 'zero-stress temperature,' which is defined as a temperature where initial concrete stresses become zero, as well as drying shrinkage of concrete. For good long-term performance of CRCP, transverse cracks need to be kept tight. To keep the crack widths tight throughout the pavement life, zero-stress temperature must be as low as practically possible. Thus, temperature control at early ages is a key component In ensuring good CRCP performance. In this study, concrete temperatures were predicted using PavePro, a concrete temperature prediction program, for a CRCP construction project, and those values were compared with actual measured temperatures obtained from field testing. The cracks were also surveyed for 12 days after concrete placement. Findings from this study can be summarized as follows. First, the actual maximum temperatures are greater than the predicted maximum temperature in the ranges of 0.2 to 4.5$^{\circ}C$. For accurate temperature predictions, hydration properties of cementitious materials such as activation energy and adiabatic constants, should be evaluated and accurate values be obtained for use as input values. Second, within 24 hours of concrete placement, temperatures of concrete placed in the morning are higher than those placed in the afternoon, and the maximum concrete temperature occurred in the concrete placed at noon. Finally, from the 12 days of condition survey, it was noted that the rate of crack occurrence in the morning placed section was 25 percent greater than that in the afternoon placed section. Based on these findings, it is concluded that maximum concrete temperature has a significant effect on crack development, and boner concrete temperature control is needed to ensure adequate CRCP performance.

  • PDF