• Title/Summary/Keyword: Zero-carbon

Search Result 244, Processing Time 0.029 seconds

Micro/Nanotribology and Its Applications

  • Bhushan, Bharat
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.128-135
    • /
    • 1995
  • Atomic force microscopy/friction force microscopy (AFM/FFM) techniques are increasingly used for tribological studies of engineering surfaces at scales, ranging from atomic and molecular to microscales. These techniques have been used to study surface roughness, adhesion, friction, scratching/wear, indentation, detection of material transfer, and boundary lubrication and for nanofabrication/nanomachining purposes. Micro/nanotribological studies of single-crystal silicon, natural diamond, magnetic media (magnetic tapes and disks) and magnetic heads have been conducted. Commonly measured roughness parameters are found to be scale dependent, requiring the need of scale-independent fractal parameters to characterize surface roughness. Measurements of atomic-scale friction of a freshly-cleaved highly-oriented pyrolytic graphite exhibited the same periodicity as that of corresponding topography. However, the peaks in friction and those in corresponding topography were displaced relative to each other. Variations in atomic-scale friction and the observed displacement has been explained by the variations in interatomic forces in the normal and lateral directions. Local variation in microscale friction is found to correspond to the local slope suggesting that a ratchet mechanism is responsible for this variation. Directionality in the friction is observed on both micro- and macro scales which results from the surface preparation and anisotropy in surface roughness. Microscale friction is generally found to be smaller than the macrofriction as there is less ploughing contribution in microscale measurements. Microscale friction is load dependent and friction values increase with an increase in the normal load approaching to the macrofriction at contact stresses higher than the hardness of the softer material. Wear rate for single-crystal silicon is approximately constant for various loads and test durations. However, for magnetic disks with a multilayered thin-film structure, the wear of the diamond like carbon overcoat is catastrophic. Breakdown of thin films can be detected with AFM. Evolution of the wear has also been studied using AFM. Wear is found to be initiated at nono scratches. AFM has been modified to obtain load-displacement curves and for nanoindentation hardness measurements with depth of indentation as low as 1 mm. Scratching and indentation on nanoscales are the powerful ways to screen for adhesion and resistance to deformation of ultrathin fdms. Detection of material transfer on a nanoscale is possible with AFM. Boundary lubrication studies and measurement of lubricant-film thichness with a lateral resolution on a nanoscale have been conducted using AFM. Self-assembled monolyers and chemically-bonded lubricant films with a mobile fraction are superior in wear resistance. Finally, AFM has also shown to be useful for nanofabrication/nanomachining. Friction and wear on micro-and nanoscales have been found to be generally smaller compared to that at macroscales. Therefore, micro/nanotribological studies may help def'me the regimes for ultra-low friction and near zero wear.

Adsorption Characteristics of Commercial Wood Charcoal in Korea (I) (국내 시판용 목탄의 흡착 특성(I))

  • Lee, Dong-Young;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.27-35
    • /
    • 2010
  • To evaluate the basic characteristics and adsorption properties of commercial wood charcoal, we investigated the proximate analysis, porosimetry analysis, methylene blue adsorption, removal ratios of formaldehyde, and removal ratio of ethylene gas. Fixed carbon contents of traditional black and white charcoal, and mechanical charcoal were 51.8~76.6%, 72.9~84.6%, and 48.5~80.3%, respectively. Refining degrees of the most traditional black charcoal were 9, and those of white charcoal and mechanical charcoals were zero. Specific surface area of traditional black charcoal was 0.1~13.7 $m^2/g$, which was quite lower than that of white charcoal (53.2~372.6 $m^2/g$) and mechanical charcoals (224.3~464.6 $m^2/g$). Also, amounts of methylene blue adsorption were quite lower in black charcoal (0.53~1.97 mg/g) compared with white charcoal (2.68~7.68 mg/g) and mechanical charcoal (11.63~26.10 mg/g). Removal ratios of formaldehyde of the black charcoal were 11.4~26.7%, which is quite similar to white charcoal (17.9~34.9%) and mechanical charcoal (5.5~25.8%). Removal ratios of ethylene gas for traditional black charcoal, traditional white charcoal, and mechanical charcoal were 2.2~43.5%, 21.7~39.1%, 21.7~39.1%, respectively. There was no significant difference in the removal ratios of formaldehyde and ethylene gas among traditional black charcoal, traditional white charcoal, and mechanical charcoal.

A Sustainability Study Based on Farm Management Value-Chain Structure (농업경영의 가치사슬 구조에 근거한 지속가능성 연구)

  • Cheong, Hoon-Hui;Kim, Sa-Gyun;Heo, Seoung-Wook
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.2
    • /
    • pp.363-384
    • /
    • 2009
  • This study aimed at finding directions for Korean agriculture to establish a new paradigm of sustainable development. Various problematic issues and concerns in the environment necessitate the transformation of Korea's development paradigm from unconditional growth to "Green Growth" through new policies on green value and review of various advanced researches. In this research, the environment-friendly agriculture's problems, particularly in agribusiness were analyzed. Drawing from Michael Porter's Value Chain Analysis, this research developed a value chain model in agriculture that reflects the environment and the present situations. Future directions in the agriculture sector were also discussed. Korea realized food self-sufficiency through the green revolution in the early 1970s. However, a lot of problems have also occurred, including ground and water pollution and the destruction of ecosystems as a result of the overuse of pesticides and chemical fertilizers. In the late 1970s, the growing interest on environment-friendly agriculture led to the introduction of sustainable methods and techniques. Unfortunately however, these were not innovative enough to foster environment-friendly agriculture. Thereafter, the consumers' distrust on agricultural products has worsened and concerns about health have increased. In view of this, the Ministry of Food, Agriculture, Forestry and Fisheries introduced in December 1993 a system of Quality-Certified Products for organic and pesticide-free agri-foods. Although a fundamental step toward the sustainability of the global environment, this system was not enough to promote environment-friendly agriculture. In 2008, Korea's vision is for "Low Carbon Green Growth" to move forward while also coping with climate change. But primary sectors in a typical value chain do not consider the green value of their operations nor look at production from an environmental perspective. In order to attain sustainable development, there is a need to use less resources and energy than what is presently used in Korean agricultural and value production. The typical value chain should be transformed into a "closed-loop" such that the beginning and the end of the chain are linked together. Such structure allows the flow of materials, products and even wastes among participants in the chain in a sustained cycle. This may result in a zero-waste sustainable production without destroying the ecosystem.

  • PDF

AN ELECTROCHEMICAL STUDY ON THE CORROSION RESISTANCE OF THE VARIOUS IMPLANT METALS (수종 임플랜트 금속의 내식성에 관한 전기화학적 연구)

  • Jeon Jin-Young;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.3
    • /
    • pp.423-446
    • /
    • 1993
  • Titanium and its alloys are finding increasing use in medical devices and dental implants. The strong selling point of titanium is its resistance to the highly corrosive body fluids in which an implant must survive. This corrosion resistance is due to a tenacious passive oxide or film which exists on the metal's surface and renders it passive. Potentiodynamic polarization measurement is one of the most commonly used electro-chemical methods that have been applied to measure corrosion rates. And the potentiodynamic polarization test supplies detailed information such as open circuit, rupture, and passivation potential. Furthermore, it indicates the passive range and sensitivity to pitting corrosion. This study was designed to compare the corrosion resistance of the commonly used dental implant materials such as CP Ti, Ti-6A1-4V, Co-Cr-Mo alloy, and 316L stainless steel. And the effects of galvanic couples between titanium and the dental alloys were assessed for their useful-ness-as. materials for superstructure. The working electrode is the specimen , the reference electrode is a saturated calomel electrode (SCE), and the counter electrode is made of carbon. In $N_2-saturated$ 0.9% NaCl solutions, the potential scanning was performed starting from -800mV (SCE) and the scan rate was 1 mV/sec. At least three different polarization measurements were carried out for each material on separate specimen. The galvanic corrosion measurements were conducted in the zero-shunt ammeter with an implant supraconstruction surface ratio of 1:1. The contact current density was recorded over a 24-hour period. The results were as follows : 1. In potential-time curve, all specimens became increasingly more noble after immersion in the test solution and reached between -70mV and 50mV (SCE) respectively after 12 hours. 2. The Ti and Ti alloy in the saline solution were most resistant to corrosion. They showed the typical passive behavior which was exhibited over the entire experimental range. Therefore no breakdown potentials were observed. 3. Comparing the rupture potentials, Ti and Ti alloy had the high(:st value (because their break-down potentials were not observed in this study potential range ) followed by Co-Cr-Mo alloy and stainless steel (316L). So , the corrosion resistance of titanium was cecellent, Co-Cr-Mo alloy slightly inferior and stainless steel (316L) much less. 4. The contact current density sinks faster than any other galvanic couple in the case of Ti/gold alloy. 5. Ag-Pd alloy coupled with Ti yielded high current density in the early stage. Furthermore, Ti became anodic. 6. Ti/Ni-Cr alloy showed a relatively high galvanic current and a tendency to increase.

  • PDF

Forced Flow Dryout Heat Flux in Heat Generating Debris Bed (열을 발생하는 Debris층에서의 강제대류 Dryout 열유속)

  • Cha, Jong-Hee;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.273-280
    • /
    • 1986
  • The purpose of this study is to obtain the experimental data of the forced flow dryout heat flux in a heat generating debris bed which simulates the degraded nuclear reactor core after severe accident. An experimental investigation has been conducted of dryout heat flux in an inductively heated bed of steel particles with upward forced flow rising coolant circulation system under atmospheric pressure. The present observations were mainly focused on the effects of coolant mass flux, particle size, bed height, and coolant subcooling on the dryout heat flux The data were obtained when carbon steel particles in the size distribution 1.5, 2.5, 3.0 and 4.0 mm were placed in a 55 mm ID Pyrex glass column and inductively heated by passing radio frequency current through a multiturn work coil encircling the column. Distilled water was supplied with variation of mass flux from 0 to 3.5 kg/$\textrm{cm}^2$ s as a coolant in the tests, while the bed height was selected as 55 mm and 110 mm. Inlet temperature of coolant varied by 2$0^{\circ}C$ and 8$0^{\circ}C$. The principal results of the tests are: (1) Dryout heat flux increases with increase of upward forcing mass flux and particle size; (2) The dryout heat flux at the zero mass flux obviously depends on the Particle size as Previous studies; (3) The forced flow dryout heat flux in the shallow bed is somewhat higher than that in the deep bed,

  • PDF

A Study on Automatic Solar Tracking Design of Rooftop Solar Power Generation System and Linkage with Education Curriculum (지붕 설치형 태양광 발전 시스템의 태양 위치 추적 구조물 설계 및 설치 실증 기법의 교육과정 연계)

  • Woo, Deok Gun;Seo, Choon Won;Lee, Hyo-Jai
    • Journal of Practical Engineering Education
    • /
    • v.14 no.2
    • /
    • pp.387-392
    • /
    • 2022
  • To participate in global carbon neutrality, the Korean government is also planning to carry out zero-energy building certification for all buildings by 2030 through the enforcement decree of the 'Green Building Support Act'. Accordingly, the government is providing various projects related to solar power generation, which are relatively close to life. In particular, roof-mounted photovoltaic power generation systems are attracting attention in terms of using unused space to produce energy without destroying the environment, but low power generation efficiency compared to other photovoltaic power generation facilities is pointed out as a disadvantage. Therefore, in this paper, to solve this problem, we propose an efficient solar panel angle variable system through research on the solar panel structure for single-axial solar tracking, and also consider the application environment of the roof-mounted solar power generation system. Suggests measures to prevent damage and secondary damage. In addition, it is judged that it is possible to control the solar panel based on ICT convergence and configure the accident prediction safety system to link the project-based education program.

Public Willingness to Pay for the Preservation of Marine Protected Species Zostera marina: A Contingent Valuation Study (해양보호생물인 거머리말의 보전에 대한 대중의 지불의사액 - 조건부 가치측정법의 적용)

  • Choi, Kyung-Ran;Kim, Ju-Hee;Yoo, Seung-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.5
    • /
    • pp.681-691
    • /
    • 2022
  • Zostera marina (ZM), a type of seagrass registered as a marine protected species in South Korea, provides valuable ecosystem services to humans, such as improving marine water quality, providing food, spawning grounds and habitats for marine life, and absorbing carbon dioxide. Therefore, the government is seeking to preserve ZM by designating ZM-protected areas. This study examined the public willingness to pay (WTP) for the preservation of ZM using contingent valuation. The one-and-one-half-bounded model was adopted for WTP elicitation, and the single-bounded model was also applied for comparison. The spike model was employed to deal with many zero WTP responses. The household average WTP was estimated as KRW 4,087 per year, securing statistical significance. The national value was KRW 84.1 billion per year. The preservation value of ZM estimated in this study can be used as important data for economic analysis of various projects or policy implementation for its preservation.

Analysis on Trends in Plogging Culture and Professional Sports Using BIG KINDS Analysis (빅카인즈 분석을 활용한 플로깅 문화와 프로스포츠 분야의 동향 분석)

  • Gyu-Min, Na;Kyung-A, Oh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1072-1080
    • /
    • 2023
  • The purpose of this study is to analyze major keywords and social phenomena related to 'plogging' in the sports field and to derive important information. In order to achieve this purpose, the news analysis system BIG Kinds provided by the Korea Press Promotion Foundation was used to analyze it. The analysis period is from 2018 to 2022, and 42 of the 5,148 news collected were finally used and analyzed. Frequency analysis, relationship map analysis, and related word analysis were performed as analysis methods, and the results are as follows. First, as a result of the frequency analysis related to 'Plogging' in the sports field, keywords such as 'Jeju', 'Players', 'World Marathon', 'SSG', and 'Lee Bong-ju' were identified. Second, as a result of the analysis of the relationship related to 'Plogging' in the sports field, keywords such as 'COVID-19', 'national representative', 'elite', 'masters', and 'COVID' were identified. Third, as a result of the analysis of words related to 'Plogging' in the sports field, keywords such as 'synthesized words', 'volunteer activities,' 'masters untact', 'Jeju', and 'athletes' were identified. In the domestic professional sports field, it has been shown that plogging is actively used for environmental activities and professional team promotion to practice carbon neutrality by international sports organizations.

Consistency in the Basic Plan on Electricity Demand and Supply and Social Costs (전력수급기본계획의 정합성과 사회적 비용)

  • LEE, Suil
    • KDI Journal of Economic Policy
    • /
    • v.34 no.2
    • /
    • pp.55-93
    • /
    • 2012
  • In Korea, energy policies are actualized through various energy-related plans. Recently, however, as high-ranking plans, which are very vision-oriented, continually set higher sector-by-sector goals, subordinate action plans, which require consistency, encounter distortions in their establishment process. Also, each subordinate action plan reveals limitations in terms of securing flexibility of the plan in responding to uncertainties of the future. These problems pose potential risks such as causing huge social costs. In this regard, with an aim to provide empirical evidence for discussions on improving the procedure for developing and executing Korea's energy plans, this study mainly analyzes the Basic Plan on Electricity Demand and Supply-one of the most important subordinate action plans-in order to explain the problems of the Basic Plan in a logical manner, and potential problems that could occur in the process of sustaining consistency between the Basic Plan and its higher-ranking plans. Further, this paper estimates the scale of social costs caused by those problems assuming realistic conditions. According to the result, in the case of where maximum electric power is estimated to be 7% (15%) less than the actual amount in the Basic Plan on Electricity Demand and Supply, the annual generation cost will rise by 286 billion won and (1.2 trillion won) in 2020. Such social costs are found to occur even when establishing and executing the Basic plan according to the target goal set by its higher-ranking plan, the National Energy Master Plan. In addition, when another higher-ranking GHG reduction master plan requires the electricity sector to reduce emissions by additional 5% in the GHG emissions from the right mix in electricity generation with 'zero' cost of carbon emission, the annual generation cost will rise by approximately 915 billion won in 2020. On the other hand, the analysis finds that since economic feasibility of electric powers in Korea varies significantly depending on their type, Korea is expected to face very small potential social costs caused by uncertainties over the future price of carbon dioxide in the process of establishing the Basic Plan.

  • PDF

Neighborhood Park Design for Railroad Station in Uijeongbu City (의정부 역전 근린공원 설계)

  • Kwon, Jin-Wook
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.38 no.4
    • /
    • pp.64-74
    • /
    • 2010
  • The study is based on an urban park design that is designed in consideration of the characteristics of Uijeongbu City, applied with adequate functions for the environment and showcasing the unique scenery in relation to the relocation of the US Air Force Camp Falling Water. The bases of the design are: the reasonable convergence of the square and park in consideration of the site characteristics; the application of an urban context as the park is located near a station; and the realization of an eco-friendly space. This study is based on foundation research regarding a review of urban square patterns, particular items in planning in relation to modern urban parks and the adaptability of the park in the future. Regarding space usage, the design is applied with notable ideas that allow the space to make its own characteristics through voluntary user activity in conjunction with the environment that will allow the park to cope with changes in the future, as opposed to a space that users experience through pre-determined programs. Below are the focal points of the design. First, the park is designed as an empty space which may accommodate the urban structural context of and usage patterns for being a field of the city ecology that changes and develops, beyond a passively-created square pattern. Such open spaces have a continuity which allows it to adapt to the development of the city. In addition, the design facilitates spontaneous processes through changes in usage pattern and time. Second, the design includes the message that the park and the city, natural things and artificial things, must communicate and network with each other. Hence the park shall not be an isolated green island within the city, but is an open space accommodating the demands for open area from nearby commercial, public and residential facilities; the park shall include a field that can accommodate a variety of programs. Third, the park is designed to encourage the effect of direct and indirect practical education by reflecting a physical plan as well as interesting experience design methods to lower carbon emissions and to create and maintain an eco-friendly space, the basis of a zero-emissions city.