• Title/Summary/Keyword: Zero-carbon

Search Result 244, Processing Time 0.025 seconds

Biohydrogen Generation and Purification Technologies for Carbon Net Zero (탄소중립형 바이오수소 생산 및 분리막기반 정제 기술 소개)

  • Hyo Won Kim
    • Membrane Journal
    • /
    • v.33 no.4
    • /
    • pp.168-180
    • /
    • 2023
  • H2 generation from renewable sources is crucial for ensuring sustainable production of energy. One approach to achieve this goal is biohydrogen production by utilizing renewable resources such as biomass and microorganisms. In contrast to commercial methods, biohydrogen production needs ambient temperature and pressure, thereby requiring less energy and cost. Biohydrogen production can reduce greenhouse gas emissions, particularly the emission of carbon dioxide (CO2). However, it is also associated with significant challenges, including low hydrogen yields, hydrodynamic issues in bioreactors, and the need for H2 separation and purification methods to obtain high-purity H2. Various technologies have been developed for hydrogen separation and purification, including cryogenic distillation, pressure-swing adsorption, absorption, and membrane technology. This review addresses important experimental developments in dense polymeric membranes for biohydrogen purification.

Compact Binary Power plant using unused thermal energy and Neural Network Controllers (미이용 열에너지를 이용한 소형 바이너리 발전과 신경망 제어기)

  • Han, Kun-Young;Jeong, Seok-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.557-560
    • /
    • 2021
  • In the face of the COVID-19 pandemic, the Korean Government announced the Korean New Deal as a national development strategy to overcome the economic recession from the pandemic crisis and lead the global action aginst sturctural changes. The Green New Deal related with the energy aims to achieve net-zero emissions and accelerates the transition towards a low-carbon and green economy. To this end, the government plans to promete an increased use of renewable energy in the the society at large. This paper introduces a compact-binary power plant using unused thermal energy and a control system based on Neural Network in order to accelerate the transition towards a low-carbon and green economy. It is expected that he compact-binary power plant accelerate introduction of renewable energy along with solar and wind power.

  • PDF

The preparation of surface-modified granular activated carbon (GAC) to enhance Perfluorooctanoic acid (PFOA) removal and evaluation of adsorption behavior (입상 활성탄 표면 개질을 통한 과불화옥탄산 (PFOA) 제거 향상 및 특성 평가)

  • Jeongwoo Shin;Byungryul An
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.177-186
    • /
    • 2023
  • Perfluorooctanoic acid(PFOA) was one of widely used per- and poly substances(PFAS) in the industrial field and its concentration in the surface and groundwater was found with relatively high concentration compared to other PFAS. Since various processes have been introduced to remove the PFOA, adsorption using GAC is well known as a useful and effective process in water and wastewater treatment. Surface modification for GAC was carried out using Cu and Fe to enhance the adsorption capacity and four different adsorbents, such as GAC-Cu, GAC-Fe, GAC-Cu(OH)2, GAC-Fe(OH)3 were prepared and compared with GAC. According to SEM-EDS, the increase of Cu or Fe was confirmed after surface modification and higher weight was observed for Cu and Fe hydroxide(GAC-Cu(OH)2 and GAC-Fe(OH)3, respectively). BET analysis showed that the surface modification reduced specific surface area and total pore volumes. The highest removal efficiency(71.4%) was obtained in GAC-Cu which is improved by 17.9% whereas the use of Fe showed lower removal efficiency compared to GAC. PFOA removal was decreased with increase of solution pH indicating electrostatic interaction governs at low pH and its effect was decreased when the point of zero charges(pzc) was negatively increased with an increase of pH. The enhanced removal of PFOA was clearly observed in solution pH 7, confirming the Cu in the surface of GAC plays a role on the PFOA adsorption. The maximum uptake was calculated as 257 and 345 ㎍/g for GAC and GAC-Cu using Langmuir isotherm. 40% and 80% of removal were accomplished within 1 h and 48 h. According to R2, only the linear pseudo-second-order(pso) kinetic model showed 0.98 whereas the others obtained less than 0.870.

Characteristics of Charcoal in Different Carbonization Temperatures (탄화 온도에 의한 목탄의 특성)

  • Kwon, Sung-Min;Kwon, Gu-Joong;Jang, Jae-Hyuk;Kim, Nam-Hun
    • Journal of Forest and Environmental Science
    • /
    • v.28 no.4
    • /
    • pp.263-267
    • /
    • 2012
  • Characteristics of charcoals manufactured in each temperature as 400, 600 800, 1,000 and $1,200^{\circ}C$ were examined. Sapwood and heartwood of Quercus variabilis that one of major species in charcoal materials were used for this experiment. Charcoal density was decreased highly 38-60% compared with wood density and density of sapwood was slightly decreased but heartwood was not changed with increasing carbonization temperature increase. Weight loss of sapwood and heartwood charcoal increased as carbonization temperature increases, and there is no difference between sapwood and heartwood charcoal. Refining degree of sapwood and heartwood charcoal was zero in charring over $800^{\circ}C$. Moisture and ash of sapwood and heartwood charcoal in each carbonization temperature were not differed between sapwood and heartwood. Volatile of sapwood charcoal was slightly higher than that of heartwood, and decreased as carbonization temperature increases. As the carbonization temperature increased, fixed carbon of sapwood and heartwood charcoal increased. Calorific values of charcoal prepared at $600^{\circ}C$ were 7,200-7,300 cal/g and then decreased slightly as carbonization temperature increased.

A Comparative Study for Steam-Methane Reforming Reaction Analysis Model (수증기-메탄개질반응 해석모델의 비교연구)

  • Choi, Chong-Gun;Chung, Tae-Yong;Nam, Jin-Hyun;Shin, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.497-503
    • /
    • 2008
  • Hydrogen is considered as a fuel of the future for its renewability and environmental compatibility. The reforming of hydrocarbon fuels is currently the most important source of hydrogen, which is expected to continue for next several decades. In this study, extensive CFD simulations on the steam-methane reforming process were conducted to study the performance of four reaction models, i.e. three Arrhenius-type models and a user-defined function (UDF) model. The accuracies of different reaction models for various operating temperatures and steam carbon ratios (SCRs) were evaluated by comparing their CFD results with zero-dimensional intrinsic model of Xu and Froment. It was found that the UDF model generally produced more accurate results than Arrhenius-type models. However, it was also shown that Arrhenius-type models could be made sufficiently accurate by choosing appropriate reaction coefficients, and thus could also be useful for the simulation of the steam-methane reforming process.

Nitrogen Removal Comparison in Porous Ceramic Media Packed-Bed Reactors by a Consecutive Nitrification and Denitrification Process

  • Han, Gee-Bong;Woo, Mi-Hee
    • Environmental Engineering Research
    • /
    • v.16 no.4
    • /
    • pp.231-236
    • /
    • 2011
  • Biological nitrogen removal, using a continuous flow packed-bed reactor (CPBR) in a consecutive nitrification and denitrification process, was evaluated. An apparent decline in the nitrification efficiency coincided with the steady increase in $NH_4{^+}$-N load. Sustained nitrification efficiency was found to be higher at longer empty bed contact times (EBCTs). The relationship between the rate of alkalinity consumption and $NH_4{^+}$-N utilization ratio followed zero-order reaction kinetics. The heterotrophic denitrification rate at a carbon-tonitrogen (C/N) ratio of >4 was found to be >74%. This rate was higher by a factor of 8.5 or 8.9 for $NO_3{^-}$-N/volatile solids (VS)/day or $NO_3{^-}-N/m^3$ ceramic media/day, respectively, relative to the rates measured at a C/N ratio of 1.1. Autotrophic denitrification efficiencies were 80-90%. It corresponds to an average denitrification rate of 0.96 kg $NO_3{^-}-N/m^3$ ceramic media/day and a relevant average denitrification rate of 0.28 g $NO_3{^-}$-N/g VS/day, were also obtained. Results presented here also constitute the usability of an innovative porous sulfur ceramic media. This enhanced the dissolution rate of elemental sulfur via a higher contact surface area.

Environmental analysis of present and future fuels in 2D simple model marine gas tubines

  • El Gohary, M. Morsy
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.559-568
    • /
    • 2013
  • Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the $CO_2$ emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the $NO_x$ emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more $NO_x$ than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive $NO_x$ control measures are a must to control these emissions levels.

Hydrogen Generation Characteristics of SMART System with Inherent $CO_2/H_2$ Separation ($CO_2/H_2$ 원천분리 SMART 시스템의 수소생산특성)

  • Ryu, Ho-Jung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.382-390
    • /
    • 2007
  • To check the feasibility of SMART(Steam Methane Advanced Reforming Technology) system, an experimental investigation was performed. A fluidized bed reactor of diameter 0.052m was operated cyclically up to 10th cycle, alternating between reforming and regeneration conditions. FCR-4 catalyst was used as the reforming catalyst and calcined limestone(domestic, from Danyang) was used as the $CO_2$ absorbent. Hydrogen concentration of 98.2% on a dry basis was reached at $650^{\circ}C$ for the first cycle. This value is much higher than $H_2$ concentration of 73.6% in the reformer of conventional SMR (steam methane reforming) condition. The hydrogen concentration decreased because the $CO_2$ capture capacity decreased as the number of cycles increased. However, the average hydrogen concentration at 10th cycle was 82.5% and this value is also higher than that of SMR. Based on these results, we could conclude that the SMART system can replace SMR system to generate pure hydrogen without HTS (high tempeature shift), LTS (low temperature shift) and $CO_2$ separation process.

The Study on the Global Emission Reduction Commitments and Environment Change After Climate Agreement (기후협정후의 배출감소와 환경변화이행에 관한 연구)

  • Kim, Kyung-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.319-328
    • /
    • 2014
  • Although most of the debate on global climate change policy has focused on quantity controls due to their political appeal, this paper argues that agreement commitment are more efficient. Scenarios show that to have a likely chance of limiting the increase in global mean temperature to two degrees Celsius, means lowering global greenhouse gas emissions by 40 to 70 percent compared with 2010 by mid-century, and to near-zero by the end of this century. Ambitious mitigation may even require removing carbon dioxide from the atmosphere. This paper emphasizes on global cooperation which is a key for preventing global warming and toward sustainable development, and fair emission reduction targets among countries are significant for achieving emission reductions.

Study on the Characterization of the Methane Stream Reforming in the High Pressure Using Reforming Catalyst (개질촉매를 이용한 고압에서 메탄 수증기 개질 특성연구)

  • 조종훈;백일현
    • Journal of Energy Engineering
    • /
    • v.12 no.2
    • /
    • pp.145-153
    • /
    • 2003
  • In order to develop the carbonation process as a core technology of zero emission coal power plant, study on characterization of methane steam reforming (MSR) which is main reaction of this process was carried out. The effects of gas hourly space velocity (GHSV), steam/carbon (S/C) ratio and pressure in the MSR using reforming catalyst were investigated. The equilibrium composition of the gases produced in the MSR were obtained below GHSV 7,000 hr$\^$-1/. The operating conditions of carbonation process using hybrid reaction (MSR+CO$_2$ adsorption using CaO) were 700∼800$^{\circ}C$ and S/C ratio of 2.5∼3. The equilibrium mixture of gases composed of 75∼78% H$_2$ and 8∼9% CO$_2$ at atmospheric pressure and 60∼78% H$_2$ and 9∼l1% CO$_2$ at 1∼30 atm respectively under above operating conditions.