• 제목/요약/키워드: Zero-Vibration

검색결과 235건 처리시간 0.02초

On the extended period of a frequency domain method to analyze transient responses

  • Chen, Kui Fu;Zhang, Qiang;Zhang, Sen Wen
    • Structural Engineering and Mechanics
    • /
    • 제31권2호
    • /
    • pp.211-223
    • /
    • 2009
  • Transient response analysis can be conducted either in the time domain, or via the frequency domain. Sometimes a frequency domain method (FDM) has advantages over a time domain method. A practical issue in the FDM is to find out an appropriate extended period, which may be affected by several factors, such as the excitation duration, the system damping, the artificial damping, the period of interest, etc. In this report, the extended period of the FDM based on the Duhamel's integral is investigated. This Duhamel's integral based FDM does not involve the unit impulse response function (UIRF) beyond the period of interest. Due to this fact, the ever-lasting UIRF can be simply set as zero beyond the period of interest to shorten the extended period. As a result, the preferred extended period is the summation of the period of interest and the excitation duration. This conclusion is validated by numerical examples. If the extended period is too short, then the front portion of the period of interest is more prone to errors than the rear portion, but the free vibration segment is free of the wraparound error.

스텝모터의 PLL 타입 위치제어 (PLL-type Position Control of Step Motors)

  • 김창환
    • 전자공학회논문지SC
    • /
    • 제49권4호
    • /
    • pp.69-77
    • /
    • 2012
  • 본 논문에서는 스텝모터(step motor)에 대한 PLL(phase locked loop) 타입의 위치제어 방법을 제안한다. 제안된 제어 방법은 기존의 개루프(open loop) 위치제어 방법의 주요 문제점인 급 가, 감속 시의 탈조 현상을 발생시키지 않으며 정지마찰력 때문에 발생되는 정상상태 위치오차를 완전히 없애준다. 또한 고속에서 더 큰 토크를 발생하여 구동 가능한 속도제어 범위가 더 크며 진동과 소음도 줄여준다. 제안된 제어기의 성능을 확인하기 위해 시뮬링크(Simulink)를 이용하여 스텝모터에 대해 시뮬레이션 한 결과를 제시한다.

Vibrations of rotationally restrained Timoshenko beam at hinged supports during an earthquake

  • Kim, Yong-Woo;Ryu, Jeong Yeon
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.1066-1078
    • /
    • 2020
  • The present paper describes an analytic solution procedure for flexural vibration of a rotationally restrained hinged-hinged Timoshenko beam at the supports during an earthquake. Focusing on maximal magnitudes of internal loads such as bending moment and shearing force under wide variations of two parameters, kL/EI and kGAL2/EI, various beams under synchronous and asynchronous support motions are simulated. The simulations under asynchronous support motions show the following facts. The variations of the maximal magnitudes of internal loads of stocky beams due to the variation of kL/EI from zero to infinity show much wider variations than those of slender beams as kGAL2/EI decreases. The maximal magnitudes of internal loads of a beam tend to be governed by their static components as kL/EI increases and kGAL2/EI decreases. When the internal loads are governed by their static components, maximal magnitudes of internal loads of the stocky tend to increase monotonically as the value of kL/EI increases. However, the simulations under synchronous support motions show the static components of the internal loads vanish and the internal loads are governed by dynamic components irrespective of the two parameters.

Gait Programming of Quadruped Bionic Robot

  • Li, Mingying;Jia, Chengbiao;Lee, Eung-Joo;Feng, Yiran
    • Journal of Multimedia Information System
    • /
    • 제8권2호
    • /
    • pp.121-130
    • /
    • 2021
  • Foot bionic robot could be supported and towed through a series of discrete footholds and be adapted to rugged terrain through attitude adjustment. The vibration isolation of the robot could decouple the fuselage from foot-end trajectories, thus, the robot walked smoothly even if in a significant terrain. The gait programming and foot end trajectory algorithm were simulated. The quadruped robot of parallel five linkages with eight degrees of freedom were tested. The kinematics model of the robot was established by setting the corresponding coordinate system. The forward and inverse kinematics of both supporting and swinging legs were analyzed, and the angle function of single leg driving joint was obtained. The trajectory planning of both supporting and swinging phases was carried out, based on the control strategy of compound cycloid foot-end trajectory planning algorithm with zero impact. The single leg was simulated in Matlab with the established kinematic model. Finally, the walking mode of the robot was studied according to bionics principles. The diagonal gait was simulated and verified through the foot-end trajectory and the kinematics.

Structures and Barrier Heights for the Internal Rotation of Ethyl Halides Caculated by ab initio Methods

  • Ryu, Ung-Sik;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권3호
    • /
    • pp.221-227
    • /
    • 1994
  • The barrier heights of the internal rotations for ethyl halides calculated by ab initio methods differ from those of experiments by more than 0.2 kcal/mol. The use of basis sets larger than the $6-31G^{\ast}$ set and the inclusion of correlation do not improve the agreement between the calculated and experimental values. The zero-point vibration corrections are substantial in the HF calculations with $6-31G^{\ast}$ basis sets, but become negligible in the MP2 calculations with $6-311G^{{\ast}{\ast}}$ basis sets for $C_2H_5F\;and\;C_2H_5Cl$. It is shown that the rigid rotor approximation and the assumed shape of the potential curve as a cos2${\theta}$ curve could also be the sources of discrepancies between calculated and experimental values. Higher order perturbation corrections narrow the gap between experimental and theoretical values, but there still remains about 10% overestimate of 0.3 kcal/mol. Optimized geometries from the HF and MP2 calculations are in good agreement with those from experiments. Dipole moments calculated from the MP2 densities show slightly better agreement with experiments than those from the HF densities.

A novel grey TMD control for structures subjected to earthquakes

  • Z.Y., Chen;Ruei-Yuan, Wang;Yahui, Meng;Timothy, Chen
    • Earthquakes and Structures
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2023
  • A model for calculating structure interacted mechanics is proposed. A structural interaction model and controller design based on tuned mass damping (TMD) was developed to control the induced vibration. A key point is to introduce a new analytical model to evaluate the properties of the TMD that recognizes the motion-dependent nonlinear response observed in the simulations. Aiming at the problem of increased current harmonics and low efficiency of permanent magnet synchronous motors for electric vehicles due to dead time effect, a dead time compensation method based on neural network filter and current polarity detection is proposed. Firstly, the DC components and the higher harmonic components of the motor currents are obtained by virtue of what the neural network filters and the extracted harmonic currents are adjusted to the required compensation voltages by virtue of what the neural network filters. Then, the extracted DC components are used for current polarity dead time compensation control to avert the false compensation when currents approach zero. The neural network filter method extracts the required compensation voltages from the speed component and the current polarity detection compensation method obtains the required compensation voltages by discriminating the current polarity. The combination of the two methods can more precisely compensate the dead time effect of the control system to improve the control performance. Furthermore, based on the relaxed method, the intelligent approach of stability criterion can be regulated appropriately and the artificial TMD was found to be effective in reducing cross-wind vibrations.

A refined vibrational analysis of the FGM porous type beams resting on the silica aerogel substrate

  • Mohammad Khorasani;Luca Lampani;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • 제47권5호
    • /
    • pp.633-644
    • /
    • 2023
  • Taking a look at the previously published papers, it is revealed that there is a porosity index limitation (around 0.35) for the mechanical behavior analysis of the functionally graded porous (FGP) structures. Over mentioned magnitude of the porosity index, the elastic modulus falls below zero for some parts of the structure thickness. Therefore, the current paper is presented to analyze the vibrational behavior of the FGP Timoshenko beams (FGPTBs) using a novel refined formulation regardless of the porosity index magnitude. The silica aerogel foundation and various hydrothermal loadings are assumed as the source of external forces. To obtain the FGPTB's properties, the power law is hired, and employing Hamilton's principle in conjunction with Navier's solution method, the governing equations are extracted and solved. In the end, the impact of the various variables as different beam materials, elastic foundation parameters, and porosity index is captured and displayed. It is revealed that changing hygrothermal loading from non-linear toward uniform configuration results in non-dimensional frequency and stiffness pushing up. Also, Al - Al2O3 as the material composition of the beam and the porosity presence with the O pattern, provide more rigidity in comparison with using other materials and other types of porosity dispersion. The presented computational model in this paper hopes to help add more accuracy to the structures' analysis in high-tech industries.

차간 거리가 주행차량의 공력특성에 미치는 영향에 관한 수치해석 연구 (A NUMERICAL STUDY ON THE EFFECT OF VEHICLE-TO-VEHICLE DISTANCE ON THE AERODYNAMIC CHARACTERISTICS OF A MOVING VEHICLE)

  • 김대규;김철호
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.66-71
    • /
    • 2014
  • Aerodynamic design of a vehicle has very important meaning on the fuel economy, dynamic stability and the noise & vibration of a moving vehicle. In this study, the correlation of aerodynamic effect between two model vehicles moving inline on a road was studied with the basic SAE model vehicle. Drag and lift are two main physical forces acting on the vehicle and both of them directly effect on the fuel economy and driving stability of the vehicle. For the research, the distance between two vehicles is varied from 5m to 30m at the fixed vehicle speed, 100km/h and the side-wind was assumed to be zero. The main issue for this numerical research is on the understanding of the interaction forces; lift and drag between two vehicles formed inline. From the study, it was found that as the distance between two vehicles is closer, the drag force acting on both the front and rear vehicle decreases and the lift force has same trend for both vehicle. As the distance(D) is 5m, the drag of the front vehicle reduced 7.4% but 28.5% for the rear-side vehicle. As the distance is 30m, the drag of the rear vehicle is still reduced to 22% compared to the single driving.

임피던스 튜브 내에 설치된 이중 평판의 음파투과연구 (A study on the sound transmission through double plates installed inside an impedance tube)

  • 김현실;김봉기;김상렬;서윤호;마평식
    • 한국음향학회지
    • /
    • 제35권4호
    • /
    • pp.253-260
    • /
    • 2016
  • 본 논문은 중간에 공기층을 포함한 이중 판이 임피던스 튜브 내에 고정된 경우 이중 판의 음향투과손실(Sound Transmission Loss, STL)을 해석적으로 구하는 방법을 다루었다. 평판의 진동과 튜브 내부 음장을 모드 함수의 무한급수의 합으로 전개하였다. 평면파 가정을 이용하여 처음 몇 개의 모드만 고려하여도 충분히 정확한 결과를 얻음을 보였으며 피크와 골(dip)의 발생 위치를 조사하였다. 이중 판의 피크는 각각의 단일 판의 피크와 같은 주파수에서 발생함을 보였다. 두 개의 판이 동일한 경우 STL은 단일 판과 마찬가지로 판의 고유진동수에서 제로가 된다. 공기층 간격이 작은 경우에 대한 근사식을 사용하여 STL의 골과 크기를 규명하였다.

전기자극 변조방식이 체성감각에 미치는 영향 (Effects of Modulation Type on Electrically-Elicited Tactile Sensation)

  • 황선희;아라 조샨;송동진;배태수;박상혁;강곤
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.711-716
    • /
    • 2012
  • The purpose of this study was to investigate how the modulation method affects the effectiveness of eliciting tactile sensations by electrical stimulation. Two methods were employed and the results were compared and analyzed; pulse amplitude modulation (PAM) and pulse width modulation (PWM). Thirty-five healthy subjects participated in the experiments to measure the stimulation intensity that began to elicit a tactile sensation - activation threshold (AT). Constant-current monophasic rectangular pulse trains were employed, and the stimulation intensity was varied from zero until the subject felt any uncomfortable sensation. The step size of the stimulation intensity was 100nC/pulse. After each experiment, the subject described the sensation both quantitatively and qualitatively. The two modulation methods did not make a significant difference as far as the AT values were concerned, but most of the subjects showed 'intra-individual' consistency. Also, it was confirmed that our range of the stimulation parameters enabled us to obtain three major tactile sensations; tickling, pressure and vibration. The results suggested that the stimulation parameters and the modulation type should be selected for each individual and that selective electrical stimulation of the mechanoreceptors needs more diversified researches on the electrode design, multi-channel stimulation protocol, waveforms of the pulse train, etc.