• Title/Summary/Keyword: Zero-Inflated Poisson Model

Search Result 43, Processing Time 0.033 seconds

THE DEVELOPMENT OF A ZERO-INFLATED RASCH MODEL

  • Kim, Sungyeun;Lee, Guemin
    • The Pure and Applied Mathematics
    • /
    • v.20 no.1
    • /
    • pp.59-70
    • /
    • 2013
  • The purpose of this study was to develop a zero-inflated Rasch (ZI-Rasch) model, a combination of the Rasch model and the ZIP model. The ZI-Rasch model was considered in this study as an appropriate alternative to the Rasch model for zero-inflated data. To investigate the relative appropriateness of the ZI-Rasch model, several analyses were conducted using PROC NLMIXED procedures in SAS under various simulation conditions. Sets of criteria for model evaluations (-2LL, AIC, AICC, and BIC) and parameter estimations (RMSE, and $r$) from the ZI-Rasch model were compared with those from the Rasch model. In the data-model fit indices, regardless of the simulation conditions, the ZI-Rasch model produced better fit statistics than did the Rasch model, even when the response data were generated from the Rasch model. In terms of item parameter ${\lambda}$ estimations, the ZI-Rasch model produced estimates similar to those of the Rasch model.

Modelling Count Responses with Overdispersion

  • Jeong, Kwang Mo
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.761-770
    • /
    • 2012
  • We frequently encounter outcomes of count that have extra variation. This paper considers several alternative models for overdispersed count responses such as a quasi-Poisson model, zero-inflated Poisson model and a negative binomial model with a special focus on a generalized linear mixed model. We also explain various goodness-of-fit criteria by discussing their appropriateness of applicability and cautions on misuses according to the patterns of response categories. The overdispersion models for counts data have been explained through two examples with different response patterns.

A Bayesian zero-inflated Poisson regression model with random effects with application to smoking behavior (랜덤효과를 포함한 영과잉 포아송 회귀모형에 대한 베이지안 추론: 흡연 자료에의 적용)

  • Kim, Yeon Kyoung;Hwang, Beom Seuk
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.2
    • /
    • pp.287-301
    • /
    • 2018
  • It is common to encounter count data with excess zeros in various research fields such as the social sciences, natural sciences, medical science or engineering. Such count data have been explained mainly by zero-inflated Poisson model and extended models. Zero-inflated count data are also often correlated or clustered, in which random effects should be taken into account in the model. Frequentist approaches have been commonly used to fit such data. However, a Bayesian approach has advantages of prior information, avoidance of asymptotic approximations and practical estimation of the functions of parameters. We consider a Bayesian zero-inflated Poisson regression model with random effects for correlated zero-inflated count data. We conducted simulation studies to check the performance of the proposed model. We also applied the proposed model to smoking behavior data from the Regional Health Survey (2015) of the Korea Centers for disease control and prevention.

Comparison of probability distributions to analyze the number of occurrence of torrential rainfall events (집중호우사상의 발생횟수 분석을 위한 확률분포의 비교)

  • Kim, Sang Ug;Kim, Hyeung Bae
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.481-493
    • /
    • 2016
  • The statistical analysis to the torrential rainfall data that is defined as a rainfall amount more than 80 mm/day is performed with Daegu and Busan rainfall data which is collected during 384 months. The number of occurrence of the torrential rainfall events can be simulated usually using Poisson distribution. However, the Poisson distribution can be frequently failed to simulate the statistical characteristics of the observed value when the observed data is zero-inflated. Therefore, in this study, Generalized Poisson distribution (GPD), Zero-Inflated Poisson distribution (ZIP), Zero-Inflated Generalized Poisson distribution (ZIGP), and Bayesian ZIGP model were used to resolve the zero-inflated problem in the torrential rainfall data. Especially, in Bayesian ZIGP model, a informative prior distribution was used to increase the accuracy of that model. Finally, it was suggested that POI and GPD model should be discouraged to fit the frequency of the torrential rainfall data. Also, Bayesian ZIGP model using informative prior provided the most accurate results. Additionally, it was recommended that ZIP model could be alternative choice on the practical aspect since the Bayesian approach of this study was considerably complex.

The Reanalysis of the Donation Data Using the Zero-Inflated Possion Regression (0이 팽창된 포아송 회귀모형을 이용한 기부회수 자료의 재분석)

  • Kim, In-Young;Park, Tae-Kyu;Kim, Byung-Soo
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.819-827
    • /
    • 2009
  • Kim et al. (2006) analyzed the donation data surveyed by Voluneteer 21 in year 2002 at South Korea using a Poisson regression based on the mixture of two Poissons and detected significant variables for affecting the number of donations. However, noting the large deviation between the predicted and the actual frequencies of zero, we developed in this note a Poisson regression model based on a distribution in which zero inflated Poisson was added to the mixture of two Poissons. Thus the population distribution is now a mixture of three Poissons in which one component is concentrated on zero mass. We used the EM algorithm for estimating the regression parameters and detected the same variables with Kim et al's for significantly affecting the response. However, we could estimate the proportion of the fixed zero group to be 0.201, which was the characteristic of this model. We also noted that among two significant variables, the income and the volunteer experience(yes, no), the second variable could be utilized as a strategric variable for promoting the donation.

Analysis of Food Poisoning via Zero Inflation Models

  • Jung, Hwan-Sik;Kim, Byung-Jip;Cho, Sin-Sup;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.5
    • /
    • pp.859-864
    • /
    • 2012
  • Poisson regression and negative binomial regression are usually used to analyze counting data; however, these models are unsuitable for fit zero-inflated data that contain unexpected zero-valued observations. In this paper, we review the zero-inflated regression in which Bernoulli process and the counting process are hierarchically mixed. It is known that zero-inflated regression can efficiently model the over-dispersion problem. Vuong statistic is employed to compare performances of the zero-inflated models with other standard models.

A Zero-Inated Model for Insurance Data (제로팽창 모형을 이용한 보험데이터 분석)

  • Choi, Jong-Hoo;Ko, In-Mi;Cheon, Soo-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.3
    • /
    • pp.485-494
    • /
    • 2011
  • When the observations can take only the non-negative integer values, it is called the count data such as the numbers of car accidents, earthquakes, or insurance coverage. In general, the Poisson regression model has been used to model these count data; however, this model has a weakness in that it is restricted by the equality of the mean and the variance. On the other hand, the count data often tend to be too dispersed to allow the use of the Poisson model in practice because the variance of data is significantly larger than its mean due to heterogeneity within groups. When overdispersion is not taken into account, it is expected that the resulting parameter estimates or standard errors will be inefficient. Since coverage is the main issue for insurance, some accidents may not be covered by insurance, and the number covered by insurance may be zero. This paper considers the zero-inflated model for the count data including many zeros. The performance of this model has been investigated by using of real data with overdispersion and many zeros. The results indicate that the Zero-Inflated Negative Binomial Regression Model performs the best for model evaluation.

Bayesian Approaches to Zero Inflated Poisson Model (영 과잉 포아송 모형에 대한 베이지안 방법 연구)

  • Lee, Ji-Ho;Choi, Tae-Ryon;Wo, Yoon-Sung
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.4
    • /
    • pp.677-693
    • /
    • 2011
  • In this paper, we consider Bayesian approaches to zero inflated Poisson model, one of the popular models to analyze zero inflated count data. To generate posterior samples, we deal with a Markov Chain Monte Carlo method using a Gibbs sampler and an exact sampling method using an Inverse Bayes Formula(IBF). Posterior sampling algorithms using two methods are compared, and a convergence checking for a Gibbs sampler is discussed, in particular using posterior samples from IBF sampling. Based on these sampling methods, a real data analysis is performed for Trajan data (Marin et al., 1993) and our results are compared with existing Trajan data analysis. We also discuss model selection issues for Trajan data between the Poisson model and zero inflated Poisson model using various criteria. In addition, we complement the previous work by Rodrigues (2003) via further data analysis using a hierarchical Bayesian model.

Soccer goal distributions in K-league (K-리그에서 축구 골의 분포)

  • Lee, Jang Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1231-1239
    • /
    • 2014
  • In this paper we analyse the distributions of the number of goals scored by home teams and away teams in K-league soccer outcomes between 1983 and 2012. Real soccer data is explained in K-league using statistical distributions such that Poisson, negative binomial, extreme value and zero inflated Poisson. How close the goals of home and away fits the different distributions are tested by performing chi-square goodness of fit tests. According to these tests, the Poisson distribution gives the best fit to the home goals data. But it is best to model the away goals data on zero inflated Poisson distribution. Also, there is some weak evidence of the dependence for home and away goals.

Developing Rear-End Collision Models of Roundabouts in Korea (국내 회전교차로의 추돌사고 모형 개발)

  • Park, Byung Ho;Beak, Tae Hun
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.151-157
    • /
    • 2014
  • This study deals with the rear-end collision at roundabouts. The purpose of this study is to develop the accident models of rear-end collision in Korea. In pursuing the above, this study gives particular attention to developing the appropriate models using Poisson, negative binomial model, ZAM, multiple linear and nonlinear regression models, and statistical analysis tools. The main results are as follows. First, the Vuong statistics and overdispersion parameters indicate that ZIP is the most appropriate model among count data models. Second, RMSE, MPB, MAD and correlation coefficient tests show that the multiple nonlinear model is the most suitable to the rear-end collision data. Finally, such the independent variables as traffic volume, ratio of heavy vehicle, number of circulatory roadway lane, number of crosswalk and stop line are adopted in the optimal model.