• 제목/요약/키워드: Zero-Energy Building Design

검색결과 53건 처리시간 0.025초

제로카본 그린홈의 여름철 운영조건에 따른 실내 열환경 평가 (An Evaluation of Indoor Thermal Environment for Zero-Carbon Green Home according to the Operation Conditions in Summer)

  • 유정연;조동우;김기한
    • 한국태양에너지학회 논문집
    • /
    • 제40권2호
    • /
    • pp.25-36
    • /
    • 2020
  • The Korean government has a plan to mandate zero-energy buildings in 2020 for public and 2025 for private buildings. In order to design a zero-energy building, insulation and airtightness, which are the most basic elements of passive house technology, are required, and the government has been accomplished this through step-by-step strengthening of related standards. In passive house with high thermal insulation and airtightness performance, the heat introduced into the building through solar radiation can be stored for a long time to keep the inside warm during winter. On the other hand, during summer, heat introduced into the building cannot be easily released to outside, so it is necessary to actively block solar radiation and high temperature outdoor air to prevent an increase of indoor temperature. Therefore, this study aims to derive an appropriate operation condition of passive house to maintain the indoor temperature at an suitable level according to the ventilation methods and solar shading conditions. As a result, under the conditions that the outdoor temperature was 28℃ or less, the ventilation using a heat recovery ventilation system at daytime and natural ventilation at nighttime were selected for the most appropriate operation method. In addition, in the case of solar shading, it was found that blocking solar radiation at daytime using the blind and open the blind at nighttime to ensure natural ventilation were selected for the most appropriate solar shading condition.

자연요소 중심으로 분류한 친환경 건축계획 요소에 관한 연구 (A Study of Sustainable Architectural Design Elements Based on the Classification of Natural Elements)

  • 임수현;박현수
    • KIEAE Journal
    • /
    • 제10권5호
    • /
    • pp.3-12
    • /
    • 2010
  • Sustainable design is getting to be controversial issue in all industries over the world particularly, in architecture as the amount of energy usage in architecture occupies 40%. Therefore, it is essential to make the standard for the sustainable design. In order to construct the sustainable design, firstly it should be considered that sustainable design elements based on natural resources to increase building energy efficiency is established and classified. The method of sustainable design divides into passive design and active design. Passive design method should be examined with active one simultaneously for more efficient usage of energy. Next, the study is followed how the sustainable design elements is adopted in buildings through the comparison of cases study of domestic and oversea. The result of case study shows similar adoption of sustainable design elements between oversea and domestic. However, the difference is shown in the building orientation and shape and the window size and position in Solar energy as well as high performance structure in Heat energy. These elements are the most significant elements in order to reduce energy load. In oversea, sustainable design is generated by architects, a client, and consultants based on the close cooperation in the beginning of early design phase before deciding building shape and envelope while in the domestic field adoption for sustainable design is conducted after deciding building shape and material. In order to design sustainable architecture more study is necessary in early stage for Zero Carbon and reducing building energy load through relation with specialists, a client and architects.

태양광열-지열 이용 Tri-generation 시스템의 적정 용량 설계를 위한 해석 연구 (Study on the Optimal Capacity Design for Tri-generation System using PVT and GSHP)

  • 배상무;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.16-23
    • /
    • 2019
  • Renewable energy systems are essential for the realization of zero energy building (ZEB). Moreover, the integrated system using solar and geothermal energy has been developed for heating, cooling and power of the building. However, there are few studies considering various design factors for system design. In this study, in order to develop the optimal design method for the system, the performance of the system was quantitatively compared and analyzed through dynamic simulation. Moreover, economic analysis was conducted based on the results of system performance. Through the performance and economic analysis results, the optimal design method of the tri-generation system was proposed.

에너지자립형 태양열 주택의 설계 및 시공 방법 체크리스트 수립 연구 (Design Checklist for Self-sufficient Zero Energy Solar House(ZeSH))

  • 윤종호;백남춘;유창균;김종일
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 춘계학술대회
    • /
    • pp.416-421
    • /
    • 2005
  • Most of solar system dissemination has been focused on domestic hot water system of which utilization to a building is relatively simple and safe than solar heating system. Through the survey on a cause of solar house dissemination failure in Korea, we conclude that design integration and systematic approach method for technology application are the most important element for a successful solar house. KIER(Korea Institute of Energy Research) and Hanbat National University have started new project on a development of Zero energy Solar House, called ZeSH which can be sustained just by natural energy without the support of existing fossil fuel. This is the 1st phase research of 10 years long-term ZeSH plan which develops a low-cost and $100\%$ self sufficient ZeSH. The goal of 1st phase ZeSH research is to get a $70\%$ self sufficiency only in thermal loads. Actual demonstration house, named KIER ZeSH I was designed and constructed as a result of 1st phase research work in the end of 2002. Various innovative technologies such as super insulation, high performance window, passive and active solar systems, ventilation heat recovery system are applied and evaluated to the KIER ZeSH I. A lot of computer simulations had been conducted for the optimal design and system integration in every design steps. Considering all the results from detailed hourly computer simulation, it is expected that at least $70\%$ self-sufficiency in thermal loads which is 1st phase target value can be excessively achieved in actual demonstration house. Besides, many valuable findings from the design and analysis to construction could be established such as collaboration method among the participants, practical design and construction techniques for system integration and the others. The purpose of this paper is to introduce the main findings through the development of KIER ZeSH I project. Practical guidelines in every design step for new low- or zero- energy solar house is proposed as result.

  • PDF

국내 친환경 업무용 건축물의 디자인에 대한 비교 연구 (A Comparative Analysis of Designs in Low Carbon Environment-Friendly Business Buildings)

  • 강연주;김문덕
    • 한국실내디자인학회논문집
    • /
    • 제23권3호
    • /
    • pp.153-163
    • /
    • 2014
  • The eco-friendly elements are important for new construction and renovation and redevelopment of the buildings. The green buildings are related with minimizing environmental pollution and how to live with nature throughout the entire process of demolishing and building. The purpose of this paper is to study on eco-friendly business buildings in the trend of mandatory green building certification system. The analysis of this paper is comparative studies on practices at eleven domestic eco-friendly business buildings through site survey on design framework of green buildings. The design framework of eleven this buildings is six kinds of skills on technical, renewable, ecological, cultural, healthy, social. The eleven this buildings in the new & renewable energy and IT technology of technical sector are satisfied with the framework. But, domestic most advanced eco-friendly business buildings are placed difference between almost the two times on the lower buildings at comparative evaluation. The three of this buildings are gratified rainwater harvesting and waste recycling systems for renewable and recycle. The buildings have an excellent aspects of technology and ecology. The benefits of this buildings are related with future compulsory zero energy house to take technical advantage of renewable energy. However, the buildings reflecting the regional culture types is insufficient. The buildings should be supplemented as follows. This buildings are need to have the social enhancement programs and design for convenient space of community residents, through health and comfort of on workplace. Moreover, this buildings have features of coexisting with human beings and nature friendly with the aim of realizing the sustainable development. The social enhancement programs through regional cultural aspects with ecology are related with individual and community livings in harmony, non-hierarchical communal lifes. The development of the cultural aspects provide for consensus about the local community and creating sustainable communities. Thus, The buildings are to have energy saving, pleasant and healthy living environment and interactive individual and community livings in harmony.

Identification of progressive collapse pushover based on a kinetic energy criterion

  • Menchel, K.;Massart, T.J.;Bouillard, Ph.
    • Structural Engineering and Mechanics
    • /
    • 제39권3호
    • /
    • pp.427-447
    • /
    • 2011
  • The progressive collapse phenomenon is generally regarded as dynamic. Due to the impracticality of nonlinear dynamic computations for practitioners, an interest arises for the development of equivalent static pushover procedures. The present paper proposes a methodology to identify such a procedure for sudden column removals, using energetic evaluations to determine the pushover loads to apply. In a dynamic context, equality between the cumulated external and internal works indicates a vanishing kinetic energy. If such a state is reached, the structure is sometimes assumed able to withstand the column removal. Approximations of these works can be estimated using a static computation, leading to an estimate of the displacements at the zero kinetic energy configuration. In comparison with other available procedures based on such criteria, the present contribution identifies loading patterns to associate with the zero-kinetic energy criterion to avoid a single-degree-of-freedom idealisation. A parametric study over a family of regular steel structures of varying sizes uses non-linear dynamic computations to assess the proposed pushover loading pattern for the cases of central and lateral ground floor column failure. The identified quasi-static loading schemes are shown to allow detecting nearly all dynamically detected plastic hinges, so that the various beams are provided with sufficient resistance during the design process. A proper accuracy is obtained for the plastic rotations of the most plastified hinges almost independently of the design parameters (loads, geometry, robustness), indicating that the methodology could be extended to provide estimates of the required ductility for the beams, columns, and beam-column connections.

제로에너지 주택용 요소기술 조합에 따른 에너지절감에 관한 연구 (Energy Saving by Combination of Element Technologies of Zero-Energy House)

  • 신현철;장건익
    • KIEAE Journal
    • /
    • 제15권4호
    • /
    • pp.77-84
    • /
    • 2015
  • Purpose: In 2008, As the green growth policy was presented, Green Building is made any effort to propagation. In this paper, the respective technologies that are able to considerably reduce the energy demands for heating, cooling, hot-water, lighting and ventilation among the variety of technologies were selected. Method: Design factors such as (1) External insulation, (2) Triple glazing window, (3) LED lighting, (4) External venetian blind, (5) Geothermal and (6) Heat recovery ventilator were derived. In addition, energy saving effects in terms of energy demand, energy consumption and energy cost were investigated using EnergyPlus, building energy analysis tool. Result : The results were as follows. (1) It can be seen that high insulated triple glazing window, heat recovery ventilator and external insulation technology is excellent for energy demand. (2) Unlike energy demand, saving effect of energy consumption and energy cost was shown in order of Geothermal > Triple Window > Heat recovery Ventilation> Insulation> LED Lighting > EVB Blind.

BIM기반 BIPV 적용 건축물의 제로에너지 자립률 검토 방법에 관한 연구 (A Study on the Review Method of Zero Energy Independence Rate in Building Applied with BIM-based BIPV)

  • 최규혁;전현우;박경도
    • 디지털융복합연구
    • /
    • 제20권2호
    • /
    • pp.277-287
    • /
    • 2022
  • 제로에너지 건축물(ZEB)은 건축물 자체의 에너지 자립도를 높인 건축물로서 에너지를 생산할 수 있는 신재생 요소가 필수적이며, 건물형 태양광(BIPV)이 가장 주목받고 있는 기술이다. ZEB의 설계에서 BIPV은 설계 초기에 계획되어야 하나, 초기 단계에서 BIPV 계획은 미비한 실정이다. 이에 본 연구에서는 설계 초기 BIPV의 계획과 ZEB 자립률 검토를 위해, 3차원 설계와 빅데이터의 융·복합 설계기술인 건축물 정보통합 모델링(BIM)을 기반으로, BIM과 ZEB에 대한 이론적 고찰 및 ZEB 자립률 분석을 위한 요소를 도출하고, BIPV 에너지 생산량과 건물 에너지 소비량 산출 방법을 분석하였다. 최종적으로, 프로젝트 모델에서 에너지 자립률을 산정하고, 등급 기준을 검토함으로써, 설계 초기 ZEB의 에너지 자립률 산정에 대한 기초적인 연구 방법을 제시하였다. 이를 통해, ZEB 주체자의 의사결정을 지원함으로써 설계 생산성을 향상시킬 수 있을 것으로 기대된다.

교육시설의 건축물에너지효율등급 사례분석을 통한 에너지자립률 평가 (Evaluation of Energy Self-Sufficiency Rate through Case Analysis of Building Energy Efficiency Rating in Educational Facilities)

  • 이현승;김지현;이승민;맹준호;신우철
    • 교육녹색환경연구
    • /
    • 제18권4호
    • /
    • pp.58-65
    • /
    • 2019
  • 교육시설은 '공공기관 에너지이용 합리화 추진에 관한 규정'에 따라 2014년부터 '건축물에너지효율 1등급 이상'의 의무대상건축물로 지정되었으며, 동 규정에서 정의하는 공공기관 건축물에 해당되어, 2008년 9월 신·재생에너지 의무대상 건축물로 포함되었다. 또한 2019년 4월 녹색건축물 조성 지원법이 개정됨에 따라, 2020년부터 ZEB인증의 의무대상 건축물로 확정되었다. 따라서 본 연구에서는 2015년 2월부터 2019년 5월까지 "건축물에너지효율등급" 본인증을 획득한 316개의 교육시설을 대상으로 "건물에너지효율등급" 및 "신·재생에너지시스템"설치 현황을 파악하고, 에너지 소요량 및 신·재생에너지 생산량을 기준으로 에너지자립률을 분석하였다. 316개 본인증 교육시설의 "건축물에너지효율등급"에 따른 ZEB 인증등급을 추정하면 1+++ 등급 12개 시설의 경우 1곳을 제외하고 모두 ZEB 5등급 이상으로 나타났으며, 239개의 1++ 등급 시설에서 11%에 해당하는 28곳이 ZEB 5등급 수준에 도달하였다. 따라서 현 수준에서 일반 교육시설의 ZEB 인증은 무리가 있으며, 건물에너지효율 1+++등급 상향과 신·재생에너지시스템 투자가 선행되어야 할 것으로 판단된다.

ECO2 프로그램을 이용한 설비 대안별 플로팅 건축물 에너지 사용량 예측 (Energy Consumption Estimation for Equitment Typical Floating Building with ECO2 Program)

  • 장문기;황동곤
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2014년도 추계학술대회
    • /
    • pp.203-204
    • /
    • 2014
  • 수자원 개발 및 관광자원 확보를 위해 플로팅 건축물 등의 기법 도입과 관광단지로의 접근 편의성, 해상교통 등을 고려한 지리적 입지조건으로 수상건축물의 필요성이 대두되여 새로운 건축유형으로 부상하고 있는 실정이다. 이에 본 연구는 새로운 건축유형의 플로팅 건축물을 설비 대안별로 에너지소비량 분석을 통하여 에너지 절감효과를 제시함으로써 플로팅 건축물 에너지 제로화를 위한 기초자료를 제공하고자 한다.

  • PDF