• Title/Summary/Keyword: Zero stiffness

Search Result 142, Processing Time 0.027 seconds

Improving the linear flexibility distribution model to simultaneously account for gravity and lateral loads

  • Habibi, AliReza;Izadpanah, Mehdi
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • There are two methods to model the plastification of members comprising lumped and distributed plasticity. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread from the joint interface resulting in a curvature distribution; therefore, the lumped plasticity methods assuming plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements, cannot model the actual behavior of reinforced concrete members. Some spread plasticity models including uniform, linear and recently power have been developed to take extended inelastic zone into account. In the aforementioned models, the extended inelastic zones in proximity of critical sections assumed close to connections are considered. Although the mentioned assumption is proper for the buildings simply imposed lateral loads, it is not appropriate for the gravity load effects. The gravity load effects can influence the inelastic zones in structural elements; therefore, the plasticity models presenting the flexibility distribution along the member merely based on lateral loads apart from the gravity load effects can bring about incorrect stiffness matrix for structure. In this study, the linear flexibility distribution model is improved to account for the distributed plasticity of members subjected to both gravity and lateral load effects. To do so, a new model in which, each member is taken as one structural element into account is proposed. Some numerical examples from previous studies are assessed and outcomes confirm the accuracy of proposed model. Also comparing the results of the proposed model with other spread plasticity models illustrates glaring error produced due to neglecting the gravity load effects.

Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory

  • Singh, S.K.;Chakrabarti, A.
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.41-51
    • /
    • 2017
  • A $C^0$ FE model developed based on an efficient higher order zigzag theory is used for hygrothermal analysis of laminated composite plates. The $C^0$ FE model satisfies the inter-laminar shear stress continuity at the interfaces and zero transverse shear stress conditions at plate top and bottom. In this model the first derivatives of transverse displacement have been treated as independent variables to circumvent the problem of $C^1$ continuity associated with the above plate theory. In the present theory the above mentioned $C^0$ continuity of the present element is compensated in the stiffness matrix formulation by using penalty parameter approach. In order to avoid stress oscillations observed in the displacement based finite element, the stress field derived from temperature/moisture fields (initial strains) must be consistent with total strain field. Special steps are introduced by field consistent approach (e.g., sampling at gauss points) to compensate this problem. A nine noded $C^0$ continuous isoparametric element is used in the proposed FE model. Comparison of present numerical results with other existing solutions shows that the proposed FE model is efficient, accurate and free of locking.

Vibration Analysis of the Large Substrate Handling Robot (8.5G 솔라셀 평판 핸들링 로봇의 진동 제어)

  • Park, Dong Il;Park, Cheolhoon;Park, Chanhun;Kim, Doohyung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.498-503
    • /
    • 2016
  • Many types of robot systems are used in the mass production line of thin film solar cells and flat panel displays. There are some issues such as the deflection and the vibration of the end-effector because robots handle large and heavy substrates at high speed. Heavy payload and high speed cause much vibration because the end-effector (fork) is made of carbon fiber reinforced polymer because of its light weightiness and sufficient stiffness. This study performs a dynamic simulation of an 8.5G solar cell substrate handling robot, including rigid and flexible bodies and a vibration controller. The fifth polynomial trajectory and the zero vibration derivative input shaping algorithm are applied. The vibration reduction is also proved in the experiments.

Linearized Dynamic Analysis of a Four-Wheel Steering Vehicle (Bicycle 모델을 이용한 4륜 조향 차량의 동력학 해석)

  • Lee, Y.H.;Kim, S.I.;Suh, M.W.;Son, H.S.;Kim, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.101-109
    • /
    • 1994
  • Recently, four-wheel steering systems have been developed and studied as one of the latest automotive technologies for improving the handling characteristics of a vehicle. In much of the proposed four-wheel steering systems, the side slip angle at the vehicle's center of gravity is maintained at zero. This approach allows the greater maneuverability at low speed by means of counter-phase rear steering and the improved stability at high speed through same-phase rear steering. In this paper, the effects of several four-wheel steering systems are studied and discussed on the responsiveness and stability of the vehicle by using the linear analysis. Especially, the effects of the cornering stiffnesses of both front and rear wheels are investigated on the yaw velocity gain and critical speed of the vehicle.

  • PDF

Analysis of Viscoplastic Softening Behavior of Concrete under Displacement Control (변위제어하에서 콘크리트의 점소성 연화거동해석)

  • Kim, Sang-Hwan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.185-193
    • /
    • 1995
  • The softening behaviors of concrete have been the object of numerous experimental and numerical studies, because the load carrying capacity of cracked concrete structure is not zero. Numerical studies are devoted to the investigation of three-dimensional softening behaviors of concrete on the basis of a viscoplastic theory, which may be able to represent the effects of plasticity and also of rheology. In order to properly describe material behaviors corresponding to different stress levels, two surfaces in stress space are adopted; one is a yield surface, and the other is a failure or bounding surface. When a stress path reaches the failure surface, it is considered that the softening behaviors are initiated as micro-cracks coalesce and are simulated by assuming that the actual strain increments in the post-peak region are less than the equivalent viscoplastic strain increment. The experimental studies and the finite element analyses have been carried out under the displacement control. Numerically simulated results indicate that the model is able to predict the essential characteristics of concrete behaviors such as the non-linearity, stiffness degradation, different behaviors in tension and compression, and specially dilatation under uniaxial compression.

  • PDF

A Study on the Analytical Technique of Stability and Buckling Characteristics of the Single Layer Latticed Domes (단층 래티스돔의 안정해석기법 및 좌굴특성에 관한 연구)

  • Han, Sang-Eul
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.209-216
    • /
    • 1996
  • The primary objective of this paper is to grasp many characteristics of buckling behavior of latticed spherical domes under various conditions. The Arc-Length Method proposed by E.Riks is used for the computation and evaluation of geometrically nonlinear fundamental equilibrium paths and bifurcation points. And the direction of the path after the bifurcation point is decided by means of Hosono's concept. Three different nonlinear stiffness matrices of the Slope-Deflection Method are derived for the system with rigid nodes and results of the numerical analysis are examined in regard to geometrical parameters such as slenderness ratio, half-open angle, boundary conditions, and various loading types. But in case of analytical model 2 (rigid node), the post-buckling path could not be surveyed because of Newton-Raphson iteration process being diversed on the critical point since many eigenvalues become zero simultaneously.

  • PDF

Natural Frequencies of Laminated Composite Plates with Attached Mass Under an Uniform Axial-Loading (등분포 축하중을 받고 첨가질량이 재하된 적층복합판의 고유진동수에 관한 연구)

  • Hong, Chang-Woo;Kim, Kyeong-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.4
    • /
    • pp.181-190
    • /
    • 2000
  • Vibration analysis for some of simple supported antisymmetric composite laminated plate loaded uniform axial-loading and attached mass was carried out. Because it is complicated to analyze this type of plate by theory of antisymmetric laminate possibility for application of theory of special orthotropic laminate was studied, and natural frequency of laminated plate attached mass was calculated. Stiffness $B_{16}$, $B_{26}$, $D_{16}$, $D_{26}$ for this type of antisymmetric laminated plate converge on zero as the number of ply increases and it is possible to use classical theory by reason that considered plate has quasi-homogeneity without relevance to variation of angle. Difference between results by theory of antisymmetric and special orthotropic laminate is 0.36~1.96%, therefore it is convenient to analyze this by use of theory of special orthotropic laminate. When composite laminated plate with attached mass is analyzed range that Was able to neglect self-weight of plate was proposed.

  • PDF

Identification of Dynamic Joint Characteristics Using a Multi-domain FRF-based Substructuring Method (다중 전달함수합성법을 이용한 진동시스템의 결합부 특성 값 동정)

  • 이두호;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.501-509
    • /
    • 2003
  • A method of identifying structural parameters such as stiffness and damping coefficients at interfacial points of vibro-acoustic systems is suggested using an optimization technique. To identify the parameters using a numerical optimization algorithm, cost functions are defined. The cost function should be zero at the correct parameter values. To minimize the cost functions using an optimization technique, a design sensitivity analysis procedure is developed in the framework of the multi-domain FRF-based substructuring method. As a numerical example, a ladder-like structure problem is introduced. With known parameter values and different initial guesses of the parameters, convergence characteristics to the exact value are compared for the three cost functions. Investigating the contours of the cost functions, we find the first cost function has the largest convergent region to the correct value. As another practical problem, stiffnesses of engine mounts and bushings in a passenger car are identified. The numerical examples show that the proposed method is efficient and accurate even when applied to realistic problems.

  • PDF

A study on preventing the fall of skew and curved bridge decks by using rubber bearings

  • Ijima, Katsushi;Obiya, Hiroyuki;Aramaki, Gunji;Kawasaki, Noriaki
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.347-362
    • /
    • 2001
  • The paper deals with preventing the collapse of by the means of supporting the bridges by rubber bearings and pedeck structures of skew and curved bridges during earthquakes, rmitting pounding between the decks and the abutments. Seismic response during pounding is characterized by various phenomena, such as the caging of bridge decks between abutments during an earthquake or decks popping out. These behaviors depend on only a small difference in seismic intensity. Regarding the global characteristics of a seismic response, smaller clearance between a deck and its abutments results in smaller impact damage of the abutments as well as lesser deformation of the rubber bearings. Similarly, smaller clearance between a deck and the side blocks results in smaller damage. The stiffnesses of the bearings and the stiffness ratio between them control the deck displacement. In short to medium length bridges, zero clearance between a deck and the abutments or the deck and the side blocks is the most effective way in preventing the deck from falling and limits the damage to the abutments or the side blocks.

Buckling and Post buckling Analysis of Composite Plates with Internal Flaws

  • Sreehari, VM;Maiti, DK
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.19-23
    • /
    • 2015
  • This work deals with the study of buckling and post buckling characteristics of laminated composite plates with and without localized regions of damage. The need of a detailed study on Finite Element Analysis of buckling and post buckling of laminated composite structures considering various aspects enhances the interest among researchers. Mathematical formulation is developed for damaged composite plates using a finite element technique based on Inverse Hyperbolic Shear Deformation Theory. This theory satisfies zero transverse shear stresses conditions at the top and bottom surfaces of the plate and provides a non-linear transverse shear stress distribution. Damage modeling is done using an anisotropic damage formulation, which is based on the concept of stiffness change. The structural elements are subjected to in-plane loading. The computer program is developed in MATLAB environment. The numerical results are presented after through validation of developed finite element code. The effect of damage on buckling and post buckling has been carried out for various parameters such as amount of percentage of damaged area, damage intensity, etc. The results show that the presence of internal flaws will significantly affect the buckling characteristics of laminated composite plates. The outcomes and remarks from this work will assist to address some key issues concerning composite structures.