• Title/Summary/Keyword: Zero current switching

Search Result 603, Processing Time 0.021 seconds

A Study on the Three Phase ZCS(Zero Current Switching) Inverter using Auxiliary Circuit (보조회로를 이용한 3상 ZCS 인버터에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Baek, Soo-Hyun;Kim, Pill-Soo;Choi, Geun-Soo;Lee, Taeck-Kie
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.209-212
    • /
    • 2003
  • This paper proposes a soft-transition control strategy for a three phase ZCS(Zero Current Switching) inverter circuit. Each phase leg of inverter circuit consists of an LC resonant tank, two main switches, and one auxiliary switches. This paper presents design consideration via a study example of a three phase prototype inverter for motor drives. A simple device tester with zero current switching capability is proposed to select eligible auxiliary switches. The principle of operation, feature and design considerations are illustrated and verified through the experiment with a 2.2kW 5kHz IGBT based experimental circuit.

  • PDF

A New Zero-Current-Transition Forward Converter without Reset Turn (리셋 권선을 사용하지 않는 새로운 형태의 영전류 천이형 포워드 컨버터)

  • Eun-Seong, Baek ;Hyun-Chil, Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.464-470
    • /
    • 2022
  • A new type of soft-switching forward converter is proposed in this study. By adding only a few components, the inductor, diode, switch, and capacitor exhibit higher efficiency than the conventional forward converter. Therefore, the switching losses of the proposed forward converter are considerably reduced compared with those of the conventional forward converter. In addition, the reset winding is not used because of the capacitor employed in the auxiliary circuit. The auxiliary capacitor is adopted for zero-current-transition operation and for dissipating magnetization energy. The performance of the proposed forward converter is validated using experimental results from a 60 W, single-output, forward converter prototype, and design guidelines are presented.

Optimal Zero Vector Selecting Method to Reduce Switching Loss on Model Predictive Control of VSI (전압원 인버터의 모델 예측 제어에서 스위칭 손실을 줄이기 위한 최적의 제로 벡터 선택 방법)

  • Park, Jun-Cheol;Park, Chan-Bae;Baek, Jei-Hoon;Kwak, Sang-Shin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2015
  • A zero vector selection method to reduce switching losses for model predictive control (MPC) of voltage source inverter is proposed. A conventional MPC of voltage source inverter has not been proposed, and a method to select the redundancy of the zero vector is required for this study. In this paper, the redundancy of the zero vectors is selected with generating a zero sequence voltage to reduce switching losses. The zero vector of 2-level inverter is determined by determining sign of the zero sequence voltage. In the proposed method, the quality of the current is retained and switching loss can be reduced compared with the conventional method. This result was verified by P-sim simulation and experiments.

High Frequency Inverter for Induction Heating with Multi-Resonant Zero Current Switching (다중공진 영전류 스위칭을 이용한 고주파 유도가열용 인버터)

  • Ra, B.H.;Suh, K.Y.;Lee, H.W.;Kim, K.T.
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.38-40
    • /
    • 2002
  • In the case of conventional high frequency inverter, with damage of switch by surge voltage when switch gets into compulsion extinction by load accident and so on because reactor is connected by series to switch, or there was problem of conduction loss by reactor's resistivity component, Also, it has controversial point of that can not ignore conduction loss of switch in complete work kind action of soft switching. In this paper, as high frequency induction heating power supply, we propose half bridge type multi resonance soft switching high frequency inverter topology that can realize high amplitude operation of load current with controlling switch current by multiplex resonance, mitigating surge voltage when switch gets into compulsion extinction and to be complete operation of zero current switching by opposit parallel connected reactor to inverter switch. and do circuit analysis for choice of most suitable circuit parameter of circuit

  • PDF

Soft Switching High Power Factor Buck Converter (Soft Switching방식 고역률 강압형 컨버터)

  • 구헌회;조기연
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.243-246
    • /
    • 1997
  • In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, a input capacitor can be small enough to filter input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn of of the switching device is a zero current switching(ZCS) and high power factor input is obtained. In addition, zero voltage switching(ZVS) at turn of is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontious conduction mode operation.

  • PDF

Soft switching high power factor buck converter using loss less snubber circuit (무손실 스너버 회로를 이용한 소프트 스위칭 강압형 고역률 컨버터)

  • 구헌회;변영복;김성철;서기영;이현우
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.77-84
    • /
    • 1997
  • buck type converter doesn't appear when an input voltag eis lower than an output voltage. This is the main reason the buck converter has not been used for high power factor converters. In this paper, soft switching high power factor buck converter is proposed. This converter is composed of diode rectifier, input capacitor can be small enough to filter input current, buck converter with loss less snubber circuit. Converter is operated in discontinous conduction mode, turn on of the switching device is a zero current switching (ZCS) and high powr factor input is obtianed. In addition, zero voltage switching (ZVS) at trun off is achieved and switching loss is reduced using loss less snubber circuit. The capacitor used in the snubber circuit raised output voltage. Therefore, proposed converter has higher output voltage and higher efficiency than conventional buck type converter at same duty factor in discontinous conduction mode operation. High power factro, efficiency, soft switching operation of proposed converter is veified by simulation using Pspice and experimental results.

  • PDF

Half-Bridge Zero Voltage Switching Converter with Three Resonant Tanks

  • Lin, Bor-Ren;Lin, Wei-Jie
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.882-889
    • /
    • 2014
  • This paper presents a zero voltage switching (ZVS) converter with three resonant tanks. The main advantages of the proposed converter are its ability to reduce the switching losses on the power semiconductors, decrease the current stress of the passive components at the primary side, and reduce the transformer secondary windings. Three resonant converters with the same power switches are adopted at the low voltage side to reduce the current rating on the transformer windings. Using a series-connection of the transformer secondary windings, the primary side currents of the three resonant circuits are balanced to share the load power. As a result, the size of both the transformer core and the bobbin are reduced. Based on the circuit characteristics of the resonant converter, the power switches are turned on at ZVS. The rectifier diodes can be turned off at zero current switching (ZCS) if the switching frequency is less than the series resonant frequency. Therefore, the reverse recovery losses on the rectifier diodes are overcome. Experiments with a 1.6kW prototype are presented to verify the effectiveness of the proposed converter.

Design of a Bidirectional Converter for Battery Charging, Discharging and Zero-voltage Control (배터리 충, 방전 및 영전압 제어를 위한 양방향 컨버터 설계)

  • Choi, Jae-Hyuck;Kwon, Hyuk-Jin;Kwon, Jae-Hyun;Lee, Jun-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.431-437
    • /
    • 2022
  • This study proposes a converter that makes battery charging, discharging, and zero voltage control possible. The proposed topology consists of an LLC converter and a half-bridge inverter, and all power semiconductor devices are applied Si-MOSFETs. The topology is designed with an LLC switching frequency of 100 kHz, a half-bridge inverter switching frequency of 50 kHz, and a battery voltage of 5 V. The advantages of the charging/discharging operation of the 5 V battery voltage and the zero voltage control of the battery are verified. In addition, by using a two-stage topology, the battery can be charged, discharged through current control, and discharged to zero voltage. With the proposed topology, the current can be maintained even when the battery voltage drops to zero.

Analysis and Design of a New Topology of Soft-Switching Inverters

  • Chen, Rong;Zhang, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.51-58
    • /
    • 2013
  • This paper proposes the power conversion mechanism of a bailer-charge-transfer zero-current-switching (CT-ZCS) circuit. The operation modes are analyzed and researched using state trajectory equations. The topology of CT-ZCS based on soft-switching inverters offers some merits such as: tracking the input reference signal dynamically, bearing load shock and short circuit, multiplying inverter N+1 redundancy parallel, coordinating power balance for easy control, and soft-switching commutation for high efficiency and large capacity. These advantages are distinctive from conventional inverter topologies and are especially demanded in AC drives: new energy generation and grid, distributed generation systems, switching power amplifier, active power filter, and reactive power compensation and so on. Prototype is manufactured and experiment results show the feasibility and dynamic voltage-tracking characteristics of the topology.

A NOVEL SOFT-SWITCHING BOOST-TYPE PWM CONVERTER TOPOLOGY (새로운 영전류영전압 스위칭 승압 DC-DC 컨버터의 성능 해석)

  • Han, Byung-Moon;Baek, Seung-Taek;Kim, Jae-Hong;Kim, Hyun-Woo
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.153-155
    • /
    • 1998
  • A novel soft-switching pulse-width modulated boost-type DC-DC converter topology is presented in this paper. The conventional boost switch is replaced by a switching cell that is comprised of two switch-diode pairs being linked by an inductor for zero-current switching turn-on. The diodes commutate the current that is flowing through the soft-switching inductor when the two switch turn-off. The capacitor is placed in parallel with the two switches during turn-off, thus providing zero-voltage switching turn-off. Simulation results are presented to support the theoretical considerations.

  • PDF