• Title/Summary/Keyword: Zero Crossing Voltage

Search Result 67, Processing Time 0.022 seconds

The Study on Sag Detecting Scheme around Zero Crossing Voltage for Single-Phase Inverter System (단상 인버터 시스템에서 영 전압 근처 전압 강하 검출 기법에 관한 연구)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.96-104
    • /
    • 2014
  • The all pass filter generates a virtual q-axis voltage component with $90^{\circ}$ phase delay but the virtual q-axis voltage cannot detect the voltage depending on the phase of the grid voltage. To overcome the problem, q-axis voltage component is generated from difference between the current and previous value of d-axis voltage component in the stationary reference frame. However, the difference voltage between the current and previous value around the zero crossing voltage is not enough to detect the voltage sag. Therefore, the new detection scheme which can detect the sag around the zero crossing voltage is proposed.

The Study on Detecting Scheme of Voltage Sag using the Two Difference Voltage (이중 차 전압을 이용한 전압 새그 검출 기법에 관한 연구)

  • Lee, Woo-Cheol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.12
    • /
    • pp.65-73
    • /
    • 2014
  • In this paper, the detection scheme of the voltage variation using a two difference voltage is proposed. The conventional sag detector is from a single-phase digital phase-locked loop (DPLL) that is based on a d-q transformation using an all-pass filter (APF). The APF generates a virtual q-axis voltage component with $90^{\circ}$ phase delay but the APF cannot generate the virtual q-axis voltage depending on the phase of the grid voltage. To overcome the problem, q-axis voltage component is generated from difference between the current and previous value of d-axis voltage component in the stationary reference frame. However, the difference voltage around the zero crossing is not enough to detect the voltage sag. Therefore, the new detection scheme using the two difference voltage which can detect the sag around the zero crossing voltage is proposed.

A Novel Predictive Digital Controlled Sensorless PFC Converter under the Boundary Conduction Mode

  • Wang, Jizhe;Maruta, Hidenori;Matsunaga, Motoshi;Kurokawa, Fujio
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • This paper presents a novel predictive digital control method for boundary conduction mode PFC converters without the need for detecting the inductor current. In the proposed method, the inductor current is predicted by analytical equations instead of being detected by a sensing-resistor. The predicted zero-crossing point of the inductor current is determined by the values of the input voltage, output voltage and predicted inductor current. Importantly, the prediction of zero-crossing point is achieved in just a single switching cycle. Therefore, the errors in predictive calculation caused by parameter variations can be compensated. The prediction of the zero-crossing point with the proposed method has been shown to have good accuracy. The proposed method also shows high stability towards variations in both the inductance and output power. Experimental results demonstrate the effectiveness of the proposed predictive digital control method for PFC converters.

EMI Prediction and Reduction of Zero-Crossing Noise in Totem-Pole Bridgeless PFC Converters

  • Zhang, Baihua;Lin, Qiang;Imaoka, Jun;Shoyama, Masahito;Tomioka, Satoshi;Takegami, Eiji
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.278-287
    • /
    • 2019
  • In this study, a zero-crossing spike current issue in a totem-pole bridgeless power factor correction (PFC) converter is comprehensively investigated for the first time. Spike current occurs when input voltage crosses zero, becomes a noise source, and causes severe common mode emission issues. A generation mechanism for electromagnetic interference (EMI) is presented to investigate the EMI problem caused by zero-crossing issue, and a noise spectrum due to this issue is predicted by a theoretical analysis based on the Fourier coefficient of an approximate spike current waveform. Furthermore, a noise reduction method is proposed and then improved to reduce the spike current. Experimental measurements are implemented on a GaN-based totem-pole bridgeless PFC converter, and the spike current can be effectively suppressed through the proposed method. Furthermore, the noise spectrums measured without and with the reduced zero-crossing spike current are compared. Experimental results validate the analysis of the noise spectrum caused by the zero-crossing spike current issue.

Zero Crossing Switching Method for PWM Converter in Rolling stock (철도차량 PWM Converter Zero Crossing 스위칭 기법)

  • Kim, Jin-Yong;Kim, Yen-Chung;Park, Sung-Ho
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.564-570
    • /
    • 2010
  • Last train of the vehicle for eht energy saving and improved performance PWM converters ares widely used. In the case of PWM converters by the zero detection system performance depends on whether it can be argued. Zero voltage detectio method of the hardware and software approach is to in this paper, the zero detection methods for hardware and software problems that have occured as a complemnetary technique was expained.

  • PDF

Current Limiting and Interrupting Operation of Hybrid Self-Excited Type Superconducting DCCB

  • Choi, S.J.;Lim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.55-59
    • /
    • 2018
  • Currently, the development of industry makes needs larger electric supply. Providers must consider the efficiency about losses and reliability of the system. In this case, DC power system can save electrical energy; long-distance transmission line losses. Relevance to switch technology with a voltage-source converter (VSC) in AC-DC conversion system have been researched. But, protection device of DC-link against fault current is still needed to study much. VSC DC power system is vulnerable to DC-cable short-circuit and ground faults, because DC-link has a huge size of capacitor filter which releases extremely large current during DC faults. Furthermore, DC has a fatal flaw that current zero crossing is nonexistence. To interrupt the DC, several methods which make a zero crossing is used; parallel connecting self-excited series LC circuit with main switch, LC circuit with power electronic device called hybrid DC circuit breaker. Meanwhile, self-excited oscillator needs a huge size capacitor that produces big oscillation current which makes zero crossing. This capacitor has a quite effective on the price of DCCB. In this paper, hybrid self-excited type superconducting DCCB which are using AC circuit breaker system is studied by simulation tool PSCAD/EMTDC.

Alleviate Current Distortion of Dual-buck Inverter During Reactive Power Support (듀얼벅 인버터의 무효전력 보상 시 전류 왜곡 저감)

  • Han, Sanghun;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.134-141
    • /
    • 2022
  • This study presents a method for reducing current distortion that occurs when a dual-buck inverter generates reactive power. Dual-buck inverters, which are only capable of unity power factor operation, can generate reactive power capabilities by modifying a modulation technique. However, under non-unity power factor conditions, current distortion occurs at zero-crossing points of grid voltage and output current. This distortion is caused by parasitic capacitors, dead-time, and discontinuous conduction mode operation. This study proposes a modified modulation method to alleviate the current distortion at zero-crossing point of the grid voltage. A repetitive controller is applied to reduce this distortion of the output current. A 1 kVA prototype is built and tested. Simulation and experimental results demonstrate the effectiveness of the proposed method.

Modeling and Application Research of Zero Crossing Detection Circuit (Zero Crossing Detection 회로 Modeling 및 응용연구)

  • Jeong, Sungin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.143-148
    • /
    • 2020
  • In the case of a system that detects and controls the phase of an alternating voltage, the analog control method compensates the phase offset part by filtering for the detected phase and applies it to the control. However, in the digital control method, precise control cannot be achieved due to an error between the operating frequency of the microprocessor or the microcontroller and the input phase time when controlled using such phase detection. In general, when the method used is a certain time, the accumulated error is compensated and adjusted at random. To solve this problem, a method of detecting a zero point in real time and compensating for the operating frequency of the microprocessor is needed. Therefore, the research to be performed in this paper to reduce these errors and apply them to precise digital control is as follows. 1) Research on how to implement Zero Crossing Detection algorithm through simulation modeling to compensate the zero point to match the operating frequency through detection. 2) A study on the method of detecting zero points in real time through the Zero Crossing Detection design using a microcontroller and compensating for the operating frequency of the microprocessor. 3) A study on the estimation of the rotor position of BLDC motors using the Zero Crossing Detection circuit.

Sensorless Drive of the BLDC Motor using a Line Voltage Difference (선간 전압을 이용한 BLDC 모터의 센서리스 구동)

  • Kim, Tae-Yeon;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.6
    • /
    • pp.508-512
    • /
    • 2013
  • In recent years, sensorless drive schemes have been proposed widely and most of them are based on the ZCP (Zero Crossing Point) detection of the BEMF (Back Electro-Motive Force). These schemes have two main problems. One is that ZCP may not be detected at low speed and thus a forced drive is required. The other problem is that there is $30^{\circ}$ phase difference between ZCP and the motor commutation instant and to ensure proper operation, this gap should be accounted for. To solve these problems a circuit is devised for detecting ZCP of the BEMF difference through the line voltage difference. Experimental results show that the output of this circuit is identical to that of the Hall sensor signal, and velocity control of a BLDC motor is possible without the sensor.

Performance Improvement on Cycloconverter-fed Induction Motor Speed Control System (공침법을 이용한 PbTiO3-Polymer O-3 압전 Composites)

  • Cho, Ok-Kyun;Shin, Hwi-Beom;Yuon, Myung-Joong
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.5
    • /
    • pp.352-359
    • /
    • 1987
  • The cycloconverter operating on a circulating current-free mode has many zero crossing points. If an exact zero crossing points are not detected, the three phase-unbalanced currents will flow in a motor. In this paper, the current feedback using a current reference wave is proposed to improve the problems of zero crossing detection, three phase-unbalanced voltages, currents, and torgue ripples. To prevent the saturation of the air gap flux and keep the torque constant, the constant voltage / hertz control with IR compensation is adopted. The PI-controller is designed using the linearized model of the cycloconverterinduction motor system. Alsi, Z-80A single board computer has been used to implement the proposed scheme which results in the performance improvement of cycloconterter-fed induction motor speed control system.

  • PDF