• Title/Summary/Keyword: Zeolite Media

Search Result 75, Processing Time 0.022 seconds

The Sorption Kinetic Studies and Development of Mixed Culture for Removal of Nonpoint Pollution Source (비점오염원 처리를 위한 혼합여재의 개발 및 흡착 Kinetic 연구)

  • Chung, Woojin;Lee, Sijin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.37-44
    • /
    • 2012
  • This study investigated on the adsorption of nonpoint pollution source using the Sand, hydroxyapatite(HAP), Zeolite and mixed culture. The adsorption of nonpoint pollution source on Sand, hydroxyapatite(HAP), Zeolite and mixed culture was investigated during a series of batch adsorption experiments. After the batch absorption experiments analysed COD, T-N, T-P on adsorption water. The experimental data was analysed using the pseudo-first-order adsorption kinetic models. Langmuir and Freundlich isotherm models were tested for their applicability. The maximum adsorbed amount $(Q_{max})$ of COD were found to be sand 0.0511mg/g, HAP 0.1905mg/g, Zeolite 1.0366mg/g and Mixed media 0.7444mg/g. The maximum adsorbed amount $(Q_{max})$ of T-N were found to be sand 0.0159mg/g, HAP 0.0537mg/g, Zeolite 0.5496mg/g and Mixed media 0.1374mg/g. The maximum adsorbed amount $(Q_{max})$ of T-P were found to be sand 0.0202mg/g, HAP 0.1342mg/g, Zeolite 0.0462mg/g and Mixed media 0.1180mg/g. As a result, the mixed media was effective to remove nonpoint pollution source.

An Estimation on the Feeding Values of Urea-mixed Zeolite In Vitro (In Vitro에 의한 제올라이트·요소합제(尿素合劑)의 사료효율(飼料效率) 판정(判定))

  • Rhee, Jae Ku;Lee, Ho Il
    • Korean Journal of Veterinary Research
    • /
    • v.21 no.2
    • /
    • pp.117-121
    • /
    • 1981
  • In order to estimate the efficiency of feed added urea-mixed zeolite the experiment was carried on in vitro. The results obtained were as follows: 1. The pH of all media added urea were inclined toward alkali, except 1% urea (included 99% zeolite) medium. 2. The concentration of ammonia in all media added urea-mixed zeolite was inversely proportional to added volume of zeolite; 1,349, 1,298, 1,255, 1,164 and $786{\mu}g/ml$ in 40%, 20%, 10%, 5% and 1% urea media respectively for 30 minutes incubation, and the concentration of ammonia in all media was increased steadily as incubation time proceeded until 9 hours. 3. The efficiency of adsorption of ammonia to zeolite of the feed added 40% urea mixture (dealing in the feed store) was hardly recognized. Accordingly, it is efficient to utilize the feed added 1~5% urea mixture, but it is of no use practica11y because they need much amount of zeolite.

  • PDF

Effect of Horticultural Media with Recycled Coir Substrates on Growth of Chinese Cabbage and Lettuce Crop (코이어 배지를 재활용한 혼합 상토가 배추 및 상추의 생육에 미치는 영향)

  • Lee, Gyu-Bin;Choe, Yun-Ui;Park, Eun-Ji;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kang, Jum-Soon
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.937-946
    • /
    • 2018
  • This study investigated the applicability of horticultural media with recycled coir substrates the growth of Chinese cabbage (Brassica campestris L. ssp. Pekinensis) and lettuce (Lactuca sativa L.) crop. The six different types of coir based substrates were A, Coir 45: Perlite 35: Vermiculite 12: Zeolite 8 (%), B, Coir 55: Perlite 25: Vermiculite 12: Zeolite 8 (%), C, Coir 65: Perlite 15: Vermiculite 12: Zeolite 8 (%), D, Coir 75: Perlite 5: Vermiculite 12: Zeolite 8 (%), E, Coir 85: Perlite 5: Vermiculite 5: Zeolite 5 (%) and F, nursery media (control). The pH and Electric conductivity of the horticultural nursery media were 6.06-7.00 and $0.45-1.10dS/m^{-1}$, respectively. The nursery media containing coir substrates had higher level of Total N, Ca, K, Mg and P than those without coir. Additionally, it was observed that the growth of Chinese cabbage was the best on D (containing 75% coir) while that of lettuce was the best on E (containing 85% coir). In general, when substrates containg a higher percentage of coir were used, the growth of Chinese cabbage and lettuce was ideal. Additionally, the P, Ca, and Mg content in both plants was not significantly altered by the amount of coir present in the media. However, with an increase in the amount of coir substrate, the chlorophyll, N, and K content was increased. After harvesting, there was no significant difference in the chemical properties of the horticultural nursery media of both plants. Thus, it can be suggested that, coir substrate after a single use could be recycled as horticulture nursery media.

A Study on the Effect of Fluidizing Media on the N2O Production in Fluidized Bed Incineration of Sewage Sludge (하수슬러지 유동층 소각에서 유동매체가 N2O 발생에 미치는 영향에 관한 연구)

  • Park, Jong-Ju;Lee, Seung-Jae;Ryu, In-Soo;Jeon, Sang Goo;Park, Yeong-Sung;Moon, Seung-Hyun
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.390-397
    • /
    • 2014
  • This study was performed to investigate the effects of fluidizing media on $N_2O$ production in fluidized bed incineration of sewage sludge. The fluidized media were prepared in a form of 2 mm bead by mixing zeolite powders in our lab. Sand having 0.4 mm of the mean size showed 0.44 m/s of minimum fluidization velocity ($U_{mf}$), while the prepared zeolite media 0.5 m/s. When the ratio of fluidizing media height to the inside diameter of the incinerator (bed aspect ratio) increased from 1.4 to 3.1, it was found that $U_{mf}$ of the zeolite media was varied from 0.5 m/s to 0.7 m/s. Under the operation conditions in 1.79 of excess air ratio, $909^{\circ}C$ of bed temperature and ca. 1.65 m/s of superficial velocity, as the weight of fluidizing meadia was increased, $O_2$ concentration in the flue gas was slightly decreased, and $CO_2$ increased. Above 6 kg of fluidizing media weight (1.98 of bed aspect ratio), it was observed that $N_2O$ concentration was significantly reduced, which might result from the decomposition of $N_2O$ on the zeolite media rather than transformation of $N_2O$ to NOx. On the other hand, in a variation of the zeolite media mixing ratio to sand and bed temperature at a constant total bed height, significant difference was exhibited in $N_2O$ emission concentration according to the temperature. Considering the operation temperature in the incineration, the effective calcination temperature of the zeolite media was suggested to be around $900^{\circ}C$.

Nitrification at Low Concentration of NH4+-N by using Attached Growth in Zeolite Media (제올라이트 여재의 부착성장을 이용한 저농도 NH4+-N의 생물학적 질산화 처리)

  • Kim, Jin-Su;Kang, Min-Koo;Yang, Chang-Hwan;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.561-567
    • /
    • 2017
  • This study focused on estimating the low concentration of $NH_4{^+}-N$ removal by using simultaneous reaction of the adsorption and microbial nitrification with microbe-attached zeolite media. To evaluate the adsorption effect of the zeolite media, the expanded polypropylene (EPP) media which are not able to adsorb $NH_4{^+}-N$ were used as a control media in order to compare the adsorption ability. Each media was used to experiment after aerated 8 hr for attachment of the microbes. The batch experiment shows that nitrification occurred in zeolite media better than EPP media because nitrifiers could consume the relatively enough amount of $NH_4{^+}-N$ adsorbed onto the zeolite media. Compared to the reactor with EPP media, nitrification occurred only in the reactor with zeolite media under continuous operation at the empty bed contact time (EBCT) of 25 min and 3 mg/L of $NH_4{^+}-N$ concentration. As the EBCT of the reactor with zeolite media increased from 10 to 60 min, the nitrification efficiencies increased too. $NH_4{^+}-N$ removal efficiency showed up more than 90% at EBCT 60 min. And the difference in concentration of the total nitrogen between the influent and the effluent was 0.25 mg/L at EBCT 10 min, 0.78 mg/L at EBCT 25 min, 0.59 mg/L at EBCT 40 min and 0.37 mg/L at EBCT 60 min, respectively. This difference was due to between adsorption rate and nitrification rate of $NH_4{^+}-N$, and it was considered that $NH_4{^+}-N$ was adsorbed on the zeolite media by the gap of the concentration.

Characteristics of soil and eco-friendly media for improving the filterability and water quality in soil filtration (하천수질정화용 토양여과의 여과용량 증대와 수질 개선을 위한 친환경 여재 특성 비교)

  • Ki, Dong-Won;Cho, Kang-Woo;Won, Se-Yoen;Song, Kyung-Guen;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.453-462
    • /
    • 2010
  • Nowadays, the challenges of ensuring good water quality and quantity of river are becoming more important for human society, but there has been troublesome for purifying river water. In this study, we performed the fundamental study of a river water treatment system using riverside soil and eco-friendly optimal media for improving river water quality and can also treat a large amount of river water. As the results of the physical and chemical characterization of the two different soils (Kyungan and Chungrang, The Republic of Korea), which were collected from real stream sides in the Han River basin, and five kinds of media (zeolite, perlite, steel slag, woodchip and mulch), both soils were all classified as a sand, and effective size ($D_{10}$) and uniformity coefficient (U) of the soil were about 0.2 mm and 4 or so, respectively. Through the batch and column experiments with the soil and eco-friendly media, zeolite and mulch were found to be efficient for decreasing nitrogen. In addition, steel slag was especially superior to the other media for phosphorus removal. From soil reforming tests volume ratios were 2.8, 1, and 1 of Kyungan soil, zeolite, and steel slag hydraulic conductivity of mixed soil was increased $1.30{\times}10^{-2}$ from $2.85{\times}10^{-3}$ of Kyungan soil, and the removal efficiencies of nitrogen and phosphorus were also improved. These results show that reforming of the soil enhanced the purification of a large amount of water, and zeolite, mulch, and steel slag might be facilitated as proper functional media.

Ammonium Ion Removal and Regeneration for Zeolite Filtration in Drinking Water Treatment (정수처리에서 제올라이트 여과를 이용한 암모니아성질소의 제거와 재생)

  • Kim, U Hyang;Lee, Seung Hui
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.661-665
    • /
    • 2004
  • As the concentration of ammonium nitrogen could be reached 2~3 mg/L in the winter in the river. It was clear that the excessive concentration of chlorinated organics could be produced with the increase of chlorine addition to remove ammonium nitrogen. In the innovative ammonium nitrogen removal process, zeolite adsorption is very efficient as substitute for rapid sand filtration without other adverse quality change in the water. This study is conducted to evaluate the feasibility of ammonium nitrogen removal and regeneration by zeolite adsorption in drinking water treatment. Also, the reuse possibility of zeolite is evaluated to change the removal efficiency of ammonium nitrogen through several times of regeneration. The ammonium nitrogen was not removed in sand filter, but it was almost removed in zeolite filter during 7 days. The sand and zeolite filters have a similar result of turbidity removal. Therefore, zeolite filtration was confirmed the removal of turbidity and ammonium nitrogen as a media. When compared KCl with NaCl as a chemical for zeolite regeneration, it is demonstrated that KCl was more efficient than NaCl in the ability of zeolite regeneration. The adsorption rate of ammonium nitrogen was almost not decreased in the results of several times of regeneration. It is indicated that both zeolite and regeneration solution were possible to reuse without variation of regeneration rate through this study.

The optimum material mixture rate of the pressing media in Pleurotus ostreatus (느타리버섯 압축배지 재료에 대한 최적 배합 연구)

  • 장현유;노문기;최병국;변재면
    • Korean Journal of Plant Resources
    • /
    • v.12 no.3
    • /
    • pp.171-178
    • /
    • 1999
  • The purpose of this study was to investigate the optimal mixture ratio for the mycelial culture of the Pleurotus ostreatus. The chief cultural media in this study were cotton hull, sawdust and rice straw and the supplemental media were zeolite, corn cob, defatted rice bran, white cotton, tobacco trash powder, rice hull and peat. The results of this study were as follows; the optimal mixture ratio of the chief cultural media were effective in 6 : 3 : 1(V/V, %), and the mycelial growth and density in the supplemental media were considerably better 1% zeolite,3% corn cob, 5% defatted rice bran, 1% white cotton, 1% tobacco trash powder, 7% rice hull in good order. The optimal mixture ratio be to the mixed supplemental media in the chief cultural media were as follows ; 2 : 2(V/V, %) at the conditions of mixed zeolite and corn cob; 3 : 2(V/V, %) at the conditions of mixed defatted rice bran and white cotton; 1 : 3(V/V, %) at the conditions of mixed tobacco trash powder and rice hull. At the conditions of the whole cultural media mixed, the mycelial growth and density were in good conditions ; cotton hull, sawdust, rice straw, zeolite, corn cob, defatted rice bran, white cotton, tobacco trash powder, rice hull, and peat were mixed 43.0 : 17.2 : 25.8 : 2.0 : 2.0 : 3.0 : 2.0 : 1.0 : 3.0 : 1.0 (V/V, %).

  • PDF

Comparison of Pollutant Removal Efficiency in Road Sediment with Media Using Filter Separator (필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교)

  • Bang, Ki-Woong;Lee, Jun-Ho;Choi, Chang-Su;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.332-340
    • /
    • 2007
  • Storm runoff from road contains significant loads of particulate and dissolved solids, organic constituents and metal elements. Micro particle is important when considering pollution mitigation because pollutant metal and organics have similar behavior with particles. The objective of this research is to evaluate the hydrodynamic filter separator performance for road storm runoff treatment. A various types of media such as perlite, granular activated carbon, zeolite were used for column test packing media and filter separator, and to determine the removal efficiency with various surface loading rate. As the results of column test, the highest SS removal efficiency was using mixed media(granular activated carbon, zeolite and perlite), and granular activated carbon mixed with zeolite has higher heavy metal removal efficiency than perlite. In laboratory scale hydrodynamic filter separator study, the operation ranges of surface loading rates were from 192 to 1,469 $m^3/m^2/day$. The estimated overall removal efficiencies of hydrodynamic filter separator for typical storm runoff were SS 48.1%, BOD 31.9%, COD 32.6%, TN 15.5%, and TP 17.3%, respectively. For the case of heavy metals, overall removal efficiencies were Fe 26.0%, Cu 19.4%, Cr 25.7, Zn 16.6%, and Pb 15.0%, respectively. The most appropriate medium for hydrodynamic filter separator was perlite mixed with granular activated carbon to treatment of road storm runoff.

Assessment of Water Purification Capacity of Vegetation Mats for the Reduction of Nonpoint-Source Pollution Loads (비점오염 부하 저감을 위한 식생 매트의 수질정화능 평가)

  • Song, Kyu Sung;Han, Sang Hun
    • Ecology and Resilient Infrastructure
    • /
    • v.3 no.1
    • /
    • pp.70-75
    • /
    • 2016
  • The purpose of this study was to develop water-purification vegetation mats consisting of the eco-friendly materials and to validate their water purification capabilities with the objective of reducing nonpoint pollution into streams. The developed vegetation mats are made of coconut fiber shell and filling consisted of zeolite, diatomaceous earth or a mixture of calcinated foam media. The bench scale assessment of the water purification capability of the three filling materials showed that the removal efficiencies of suspended solid (SS), total nitrogen (T-N) and total phosphorus (T-P) were higher in the foam media than in zeolite or diatomaceous earth. From the results of the field experiment, the removal efficiencies of the vegetation mats filled with the foam media were 60.1% in SS, 32.2% in T-N and 20.2% in T-P. Therefore the vegetation mats filled with the foam media calcinated from zeolite and diatomaceous earth should have higher efficiencies in controlling the nonpoint source pollutions in streams.