• Title/Summary/Keyword: Zeolite A,

Search Result 1,064, Processing Time 0.025 seconds

In-field evaluation of clinoptilolite feeding efficacy on the reduction of milk aflatoxin M1 concentration in dairy cattle

  • Katsoulos, Panagiotis D.;Karatzia, Maria A.;Boscos, Constantinos;Wolf, Petra;Karatzias, Harilaos
    • Journal of Animal Science and Technology
    • /
    • v.58 no.7
    • /
    • pp.24.1-24.7
    • /
    • 2016
  • Background: Clinoptilolite is a natural zeolite with high adsorption capacity for polar mycotoxins such as aflatoxins. The efficacy of clinoptilolite in ameliorating the toxic effects of aflatoxicosis has been proven in monogastric animals, but there is no such evidence for ruminants. The aim of this study was to evaluate, under field conditions, whether the dietary administration of clinoptilolite in dairy cows could reduce the concentration of aflatoxin M1 ($AFM_1$) in bulk-tank milk, in farms with higher than or close to $0.05{\mu}g/kg$ of milk (European maximum allowed residual level). An objective of the present study was also to investigate the effect of particle size of clinoptilolite on aflatoxin binding. Methods: Fifteen commercial Greek dairy herds with AFM1 concentrations in bulk tank milk ${\geq}0.05{\mu}g/kg$ were selected. Bulk tank milk AFM1 was determined prior to the onset and on day 7 of the experiment. Clinoptilolite was added in the total mixed rations of all farms at the rate of 200 g per animal per day, throughout this period. Two different particle sizes of clinoptilolite were used; less than 0.15 mm in 9 farms (LC group) and less than 0.8 mm in 6 farms (HC group). Results: Clinoptilolite administration significantly reduced $AFM_1$ concentrations in milk in all farms tested at an average rate of 56.2 % (SD: 15.11). The mean milk $AFM_1$ concentration recorded on Day 7 was significantly (P < 0.001) lower compared to that of Day 0 ($0.036{\pm}0.0061$ vs. $0.078{\pm}0.0074{\mu}g/kg$). In LC group farms the reduction of milk $AFM_1$ concentration was significantly higher than HC group farms ($0.046{\pm}0.0074$ vs. $0.036{\pm}0.0061{\mu}g/kg$, P = 0.002). As indicated by the Pearson correlation, there was a significant and strong linear correlation among the milk $AFM_1$ concentrations on Days 0 and 7 (R = 0.95, P < 0.001). Conclusions: Dietary administration of clinoptilolite, especially of smallest particle size, at the rate of 200 g per cow per day can effectively reduce milk $AFM_1$ concentration in dairy cattle and can be used as a preventive measure for the amelioration of the risks associated with the presence of aflatoxins in the milk of dairy cows.

Adsorption Properties of U, Th, Ce and Eu by Myogi Bentonite Occurring in Japan (일본 묘기광산 벤토나이트의 물리화학적 성질 및 U, Th, Ce 및 Eu 흡착특성)

  • Song Min-Sub;Koh Sang-Mo;Kim Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.3 s.45
    • /
    • pp.183-194
    • /
    • 2005
  • The mineralogical, physicochemical and thermal properties of the Myogi bentonite occurring in Japan were measured. A adsorption properties of U, Th, Ce and Eu ions on the Myogi bentonite were also investigated in different solution concentrations and pH conditions. The Myogi bentonite showed a strong alkaline character (pH 10.4), very high swelling, viscosity property and CEC, and a slow flocculation behavior due to the strong hydrophilic property. By the thermal analysis, the dehydroxylation of crystal water in bulk and clay fractions of the Myogi bentonite occur at $591^{\circ}C$ and $658^{\circ}C$, respectively, The adsorption experiments of ions such as U, Th, Ce and Eu were conducted for 0.2 g bentonites with 20mL solutions of various concentrations and different pH conditions with pH 3, 5, 7, 9, and 11. As a result, the Myogi bentonite showed excellent adsorption capacities for Ce, Th and Eu ions, whereas U ion showed very low adsorption capacity. Generally, Ce, Th and Eu ions showed the similar adsorption properties for the different concentrated solutions and pH conditions. These adsorption properties seem to be affected by the formation of various forms of chemical species and precipitation as well as ionic exchange reaction and surface adsorptions on smectite. Some associated zeolite minerals perhaps have some effects on the adsorption of U, Th, Ce and Eu on Myogi bentonite.

Comparison of Pipeline and Clamshell Capping Technologies for the Remediation of Contaminated Marine Sediments (해양 오염퇴적물 정화를 위한 원통관과 클램쉘을 이용한 피복 기술의 비교)

  • Kang, Ku;Hong, Seong-Gu;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Navigation and Port Research
    • /
    • v.41 no.4
    • /
    • pp.195-206
    • /
    • 2017
  • In situ capping technology for marine sediment pollution control has never been applied in South Korea. In this study a pilot project for the capping was carried out in Busan N Harbor. Pipeline and clamshell capping technologies were implemented for the pollution control. Changes of capping shapes, sediment contamination, and the time and costs required for the two constructions were compared. Both the pipeline and clamshell technologies were found to satisfy the target thickness of 50 cm on average. However, the pipeline method did not operate sensitively in terms of change of the sea floor topography, resulting in an uneven shape and a thickness. Organic carbon and ignition loss quite decreased after the pipeline or the clamshell capping while pH showed no significant change. Organic and residual fraction of Cd, Ni, and Zn in the sediments appeared to decrease after all cappings. The pipeline method took a construction time four times as much as the clamshell method. The clamshell method was demonstrated to reduce the construction cost by about 40% compared with the pipeline method. However, a monitoring for all the parameters needs to be conducted at least two years in order to better evaluate an efficiency of the pollution control by these capping constructions.

Study on the Fuel Decomposition Characteristics and Coke Formation by Type of Endothermic Fuel and Method of Catalyst Molding (흡열연료 종류와 촉매 성형 방법에 따른 분해특성과 코크 생성에 관한 연구)

  • Lee, Tae Ho;Kang, Saetbyeol;Kim, Sung Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.611-619
    • /
    • 2019
  • This study was carried out to investigate fuel decomposition characteristics and coke formation according to types of endothermic fuels and methods of catalyst molding. Methylcyclohexane (MCH), n-dodecane, and exo-tetrahydrodipentadiene (exo-THDCP) were used as the endothermic fuels. As a catalyst, USY720 supported with platinum was used. It was manufactured by only using pressure to disk-type, or pelletized with a binder and a silica solution. The characteristics of the catalysts according to the molding method were analyzed by X-ray diffraction analysis, scanning electron microscopy, nitrogen adsorption-desorption isotherm, and ammonia temperature programmed desorption analysis. The reaction was carried out under conditions of high temperature and high pressure ($500^{\circ}C$, 50 bar) in which the fuel could exist in a supercritical state. The product was analyzed by gas chromatograph/mass spectrometer and the coke produced by the catalyst was analyzed by thermogravimetric analyzer. After the reaction, the composition of the products varied greatly depending on the structure of the fuel. In addition, the crystallinity and surface properties of the catalysts were not changed by the method of catalyst molding, but the changes of the acid sites and the pore characteristics were observed, which resulted in changes in the amount and composition of products and coke.

A Literature Review on Studies of Bentonite Alteration by Cement-bentonite Interactions (시멘트-벤토나이트 상호작용에 의한 벤토나이트 변질 연구사례 분석)

  • Goo, Ja-Young;Kim, Jin-Seok;Kwon, Jang-Soon;Jo, Ho Young
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.219-229
    • /
    • 2022
  • Bentonite is being considered as a candidate for buffer material in geological disposal systems for high-level radioactive wastes. In this study, the effect of cement-bentonite interactions on bentonite alteration was investigated by reviewing the literature on studies of cement-bentonite interactions. The major bentonite alteration by hyperalkaline fluids produced by the interaction of cementitious materials with groundwater includes cation exchange, montmorillonite dissolution, secondary mineral precipitation, and illitization. When the hyperalkaline leachate from the reaction of the cementitious material with the groundwater comes into contact with bentonite, montmorillonite, the main component of bentonite, is dissolved and a small amount of secondary minerals such as zeolite, calcium silicate hydrate, and calcite is produced. When montmorillonite is continuously dissolved, the physicochemical properties of bentonite may change, which may ultimately causes changes in bentonite performance as a buffer material such as adsorption capacity, swelling capacity, and hydraulic conductivity. In addition, the bentonite alteration is affected by various factors such as temperature, reaction period, pressure, composition of pore water, bentonite constituent minerals, chemical composition of montmorillonite, and types of interlayer cations. This study can be used as basic information for the long-term stability verification study of the buffer material in the geological disposal system for high-level radioactive wastes.

Trend and Future Strategy of Ammonia Gas Recovery based on Adsorption from Livestock Fields (축산현장에서 발생된 암모니아 기체의 흡착기반 회수 동향 및 향후 전략)

  • Sangyeop Chae;Kwangmin Ryu;Sang-hun Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.45-53
    • /
    • 2023
  • This study discussed the trend and future strategy of adsorption technology R&D to effectively recover ammonia emitted from the livestock fields. A proper ammonia adsorbent should incorporate acidic or hydrogen bonding functional groups on the surface, as well as a high specific surface area and a good surface structure appropriate for ammonia adsorption. Activated carbon and minerals such as zeolite have widely been used as ammonia adsorbents, but their adsorption effects are generally low, so any improvement through surface modification should be necessary. For example, incorporation of metal chloride included in a porous adsorbent can promote ammonia adsorption effectiveness. Recently, new types of adsorbents such as MOFs (Metal-Organic Frameworks) and POPs (Porous Organic Polymers) have been developed and utilized. They have shown very high ammonia adsorption capacity because of adjustable and high specific surface area and porosity. In addition, Prussian Blue exhibited high ammonia adsorption and desorption performance and selectivity. This looks relatively advantageous in relation to the recovery of ammonia from livestock waste discharge. In the future, further research should be made to evaluate ammonia adsorption/desorption efficiency and purity using various adsorbents under conditions suitable for livestock sites. Also, effective pre- and/or post-treatment processes should be integrated to maximize ammonia recovery.

The Catalytic Reduction of Carbon Dioxide by Butane over Nickel loaded Catalysts (니켈담지촉매상에서 부탄에 의한 이산화탄소의 환원반응)

  • Yoon, Cho-Hee;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.8 no.3
    • /
    • pp.543-549
    • /
    • 1997
  • The direct reaction of carbon dioxide($CO_2$) with butane($C_4H_{10}$) to obtain synthesis gas and hydrocarbon compounds have been studied on nickel loaded catalysts. In the reaction of $CO_2$ with $C_4H_{10}$, Ni loaded catalysts showed similar activity with Pt catalyst and Coke deposition on the catalyst was severe by dehydrogenation of butane. The main products were carbon monoxide and hydrogen, when alumina and Y type zeolite were used as a support. Instead, a great deal of aromatic hydrocarbons were obtained on the Ni loaded ZSM-5 catalyst. The conversion of $CO_2$ increased with the increasing molar ratio of $CO_2$/$C_4H_{10}$ on Ni/ZSM-5, Ni/NaY and Ni/alumina catalyst, but the conversion decreased again from the ratio of 2. The value of $CO_2$ conversion was the highest at the 5wt% of Ni loading on ZSM-5 catalyst. A part of cokes deposited on the catalysts diminished when only $CO_2$ gas or water steam flowed into the reactor. The coke deposited on the catalysts was very reactive and it may be an important intermediate for the carbon dioxide reforming reaction.

  • PDF

Feasibility as a Laundry Detergent Additive of an Alkaline Protease from Bacillus clausii C5 Transformed by Chromosomal Integration (Chromosomal Integration에 의해 제조한 Bacillus clausii C5 유래의 alkaline protease의 세제 첨가제 응용성)

  • Joo, Han-Seung;Choi, Jang Won
    • KSBB Journal
    • /
    • v.27 no.6
    • /
    • pp.352-360
    • /
    • 2012
  • Bacillus clausii I-52 which produced SDS- and $H_2O_2$-tolerant extracellular alkaline protease (BCAP) was isolated from heavily polluted tidal mud flat of West Sea in Incheon, Korea and stable strain (transformant C5) of B. clausii I-52 harboring another copy of BCAP gene in the chromosome was developed using the chromosome integration vector, pHPS9-fuBCAP. When investigated the production of BCAP using B. clausii transformant C5 through pilot-scale submerged fermentation (500 L) at $37^{\circ}C$ for 30 h with an aeration rate of 1 vvm and agitation rate of 250 rpm, protease yield of approximately 105,700 U/mL was achieved using an optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_4{\cdot}7H_2O$ 0.01%, $FeSO_4{\cdot}7H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). The enzyme stability of BCAP was increased by addition of polyols (10%, v/v) and also, the stabilities of BCAP towards not only the thermal-induced inactivation at $50^{\circ}C$ but also the SDS and $H_2O_2$-induced inactivation at $50^{\circ}C$ were enhanced. Among the polyols examined, the best result was obtained with propylene glycol (10%, v/v). The BCAP supplemented with propylene glycol exhibited extreme stability against not only the detergent components such as ${\alpha}$-orephin sulfonate (AOS) and zeolite but also the commercial detergent preparations. The granulized enzyme of BCAP was prepared with approximately 1,310,000 U/g of granule. Wash performance analysis using EMPA test fabrics revealed that BCAP granule exhibited high efficiency for removal of protein stains in the presence of anionic surfactants as well as bleaching agents. When compared to Savinase 6T$^{(R)}$ and Everlase 6T$^{(R)}$ manufactured by Novozymes, BCAP under this study probably showed similar or higher efficiency for the removal of protein stains. These results suggest that the alkaline protease produced from B. clausii transformant C5 showing high stability against detergents and high wash performance has significant potential and a promising candidate for use as a detergent additive.

Experimental Study on the Mitigation of Harmful Algal Blooms by Mono-Minerals (환경친화성 단일 광물질에 의한 적조구제 실험)

  • 장영남;채수천;배인국;박맹언;김필근;김선옥
    • Economic and Environmental Geology
    • /
    • v.36 no.6
    • /
    • pp.557-561
    • /
    • 2003
  • It is important to find out a new material having high removal efficiency for the harmful algal blooms because the dispersion of Hwangto in a large amount to the sea water may bring some ecologically unfavorable problems. For this purpose, the efficiency of several natural and synthetic mineral species for the mitigation of algal blooms was measured. The mixing ratio of monominerals and the sea water with 3,000∼5,000 cells/$m\ell$ of Cochlodinium polykrikoides was 10 g/${\ell}$ and the removal ratio was measured by counting the living cells after the dispersion time of 10, 30 and 60 min., respectively. According to the experimental results, the removal ratio by illite, kaolinite, montmonmorillonite, red mud, Na-A type of zeolite ranged 84-92% after 1hr of contact time, which is comparable to that of Hwangto. The size of above monominerals ranged 3∼50${\mu}m$. Meanwhile, the amorphose material and hematite with the size of 50∼100 nm showed excellent removal ratio of more than 99% after 30min. of dispersion. The results of the study showed that the removal ratio was not related to the chemical composition and pH of the minerals applied but to the grain size. The experimental results strongly suggest that the main mitigation mechanism would be the contact and coagulation.

Recoil Effects of Neutron-Irradiated Metal Permanganates (중성자조사 금속 과망간산염의 반조효과)

  • Lee, Byung-Hun;Kim, Jung-Gwan
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 1988
  • The chemical effects resulting from the capture of the thermal neutron by manganese in various crystalline permanganates, that is, potassium permanganate ammonium permangante and barium permanganate, have been investigated. The effect of pH of solvent on the distribution of radioactive manganese chemical species, that is, cationic $^{56}$ Mn, $^{56}$ MnO$_2$ and $^{56}$ MnO$_4$$^{[-10]}$ produced in the permanganates by $^{55}$ Mn(n, r) $^{56}$ Mn reaction was studied by using various adsorbents and ion-exchanger, that is, zeolite A-3, kaolinite, alumina, manganese dioxide and Dowex-50 The distribution of radioactive MnO$_4$$^{[-10]}$ in kaolinite and alumina has higher than that in other adsorbents and ion-exchanger at a representative pH value of 4, 7 and 9, respectively. The yield of radioactive MnO$_4$$^{[-10]}$ is higher at pH 4 End pH 9 than at pH 7. The thermal annealing behavior of recoil manganese atoms produced in the permanganates by $^{55}$ Mn(n, r) $^{56}$ Mn reaction was also studied. The retention of MnO$_4$$^{[-10]}$ in the thermal annealing is increased as annealing temperature increases when it was treated at 10$0^{\circ}C$ and 13$0^{\circ}C$. The recoil effect of permanganates was explained by the hot zone model.

  • PDF