• Title/Summary/Keyword: Zeolite 5A

Search Result 500, Processing Time 0.029 seconds

Engineering Properties of Volcanic Ash-Cement Soil Mixtures and Zeolite-Cement Soil Mixtures (화산재-시멘트 혼합토 및 제올라이트-시멘트 혼합토의 공학적 특성)

  • Lee, Chung-Won;Chang, Dong-Su;Park, Sung-Yong;Yeon, Kyu-Seok;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.65-75
    • /
    • 2013
  • In this study, the engineering characteristics of volcanic ash-cement soil mixtures and zeolite-cement soil mixtures are investigated by using unconfined compression test, freezing-thawing test, SEM and XRD analysis. The samples were mixed with volcanic ash from Mt. Baekdusan or porous zeolite, and cement as the ratios of 3.5:1, 4.0:1, 4.5:1, 5.0:1 with and without metakaolin. It is confirmed that compressive strength degraded with increasing of the amount of volcanic ash or zeolite, and increased with addition of metakaolin as a binder. Moreover, test results suggested that the mixtures provided sufficient freezing-thawing resistance. In addition, ettringite as a product of cement hydration was detected by SEM and XRD, and that possibly contributes to the strength of the mixtures.

Effect of Carbon Dioxide in Dehydrogenation of Ethylbenzene to Styrene over Zeolite-Supported Iron Oxide Catalyst

  • 장종산;노제민;박상언;김우영;이철위
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1342-1346
    • /
    • 1998
  • The dehydrogenation of ethylbenzene with carbon dioxide has been carried out over ZSM-5 zeolite-supported iron oxide catalyst as well as commercial catalyst (K-Fe2O3) and unsupported iron oxide (Fe3O4) for comparison. In the dehydrogenation over the ZSM-5 zeolite-supported iron oxide catalyst, ethylbenzene is predominantly converted to styrene by an oxidative pathway in the presence of excess carbon dioxide. Carbon dioxide in this reaction is found to play a role as an oxidant for promoting catalytic activity as well as coke resistance of catalyst. On the other hand, both of commercial catalyst and unsupported Fe2O4 exhibit considerable decrease in catalytic activity under the same condition. It is suggested that an active phase for the dehydrogenation with carbon dioxide over ZSM-5 zeolite-supported iron oxide catalyst would be rather a reduced and isolated magnetite (Fe3O4)-like phase having oxygen deficiency in the zeolite matrix.

On Crystallization of Hadong Kaolin Treated with Aqueous Sodium Hydroxide Solution (하동고령토의 Sodium Hydroxide 용액 처리에 의한 결정의 변화)

  • Kwon Ei Yol;Kim Myun Sup
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.4
    • /
    • pp.249-256
    • /
    • 1972
  • Hadong-Kaolin was treated with aqueous sodium hydroxide solution. The crystalline structure was studied by X-ray powder diffraction method. The optimum conditions for various crystal formation were as follows: Crystal Concentration Temp. reating time Halloysite 1~4 N NaOH $60^{\circ}C$ 0.5${\sim}$4 hr Sodium A zeolite 0.5${\sim}$2 N NaOH 80${\sim}$$100^{\circ}C$ 6${\sim}$20 hr Hydoxysodalite > 4 N NaOH 80${\sim}$$100^{\circ}C$ > 4 hr The ratio of $Na_2O to SiO_2$ for crystallizing sodium A zeolite was 0.5-1.5. The $Ca^{++}$ ion exchange capacity of produced sodium A zeolite for 0.2 N $CaCl_2$ solution at $25^{\circ}C$ was amounted to 65% of theoretical value.

  • PDF

Comparison of Desorption Characteristics of Water Vapor on the Types of Zeolites (제올라이트 종류별 수분 탈착특성 비교)

  • Lee, Song-Woo;Na, Young-Soo;An, Chang-Doeuk;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.21 no.12
    • /
    • pp.1463-1468
    • /
    • 2012
  • The purpose of this work is to study the desorption characteristics of water vapor on zeolites saturated with water vapor. Three kinds of zeolite; zeolite 3A, zeolite 4A, and zeolite 5A were used as adsorbent. The desorption experiments with several different temperatures in the range of $90{\sim}150^{\circ}C$ and several different flow rates in the ranges of 0~0.4 L/min on zeolite bed were carried out. The desorption ability of water vapor was most effective on zeolite 5A among the compared zeolites. The higher the desorption temperature of water vapor was, the faster the desorption velocity was. The desorption ability of water vapor with an air supply was higher than that without an air supply. The most appropriate air flow rate was considered as 0.1 L/min.

Fabrication of ZnO incorporated TMA-A zeolite nanocrystals (ZnO를 담지한 TMA-A 제올라이트 나노결정의 제조)

  • Lee, Seok-Ju;Lim, Chang-Sung;Kim, Ik-Jin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.6
    • /
    • pp.238-244
    • /
    • 2007
  • Nano-sized ZnO crystals were successfully incorporated using ion exchange method in TMA-A zeolite synthesized by the hydrothermal method. The optimal composition for the synthesis of TMA-A zeolite was resulted in a solution of $Al(i-pro)_3$:2.2 TEOS:2.4 TMAOH:0.3 NaOH:200 $H_2O$. 0.3g of TMA-A zeolite and 5mol of $ZnCl_2$ solution were employed for the preparation of ZnO incorporated TMA-A zeolite. The ZnO incorporated TMA-A zeolite precursors, prepared from the process of mixing, stirring, centrifugal separation and drying, were calcined at temperatures from 400 to $600^{\circ}C$ for 3 h. The crystallization process of ZnO incorporated TMA-A zeolite was analyzed by X-ray diffraction (XRD). The Brunaur-Emett-Teller (BET) surface area of the ZnO incorporated TMA-A zeolite was measured. Subsequently, the morphology and the particle size depending on the temperature and time were observed using scanning electron microscopy(SEM), transmission electron microscopy(TEM) and particle size analyzer.

Three Binary Ion-Exchange Isotherms in Zeolite A : $Cs^+-Ag^+$ , $Ag^+-Na^+$ , and $NH_4^+-Na^+$

  • Heo, Nam-Ho;Kim, Yang;Lin, Gloria C.H.;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.407-410
    • /
    • 1990
  • Three binary ion-exchange isotherms of zeolite A have been determined using 0.1 M solutions of the aqueous nitrates for the one-step preparation of particular mixed-cation zeolite A compositions. Analyses were done primarily by flame emission spectrometry (FES), together with crystallographic determinations of $Cs^+$ and colorimetric determinations of $NH_{4^+}$. Corrections for a presumed impurity of extra-lattice species in powder sample were made for the determination of $Na^+$. The $Cs^+-Ag^+$ isootherm indicates a strong selectivity for $Ag^+$ through the entire range of zeolite composition. The $Ag^+-Na^+$ isotherm agrees very closely with that reported by Sherry and Walton, and that of $NH_{4^+}-Na^+$ resembles those obtained using zeolite pellets.

Preparation and Catalytic Properties of Vanadium-Containing MFI Type Zeolite (바나듐 함유 MFI형 제올라이트의 제조 및 촉매적 특성)

  • Kim, Geon Joong;Ko, Wan Suk;Cho, Byung Rin
    • Applied Chemistry for Engineering
    • /
    • v.5 no.2
    • /
    • pp.361-372
    • /
    • 1994
  • Vanadium containing MFI type zeolites have been prepared hydrothermally or by the impregnation method with $NH_4VO_3$ solution after dealumination of HZSM-5. Incorporation of vanadium into the framework of zeolite has been demonstrated by XRD, DTA, FT-IR and ESR analyses. Upon $NH_4VO_3$ impregnation and calcination of dealuminated zeolite, vanadium substitution into the framework could be performed like a hydrothermally synthesized zeolite. Vanadium in zeolite is able to pass redox cycles at high temperatures, and it is shown that vanadium is probably fixed and atomically dispersed in the structure of zeolite. The catalytic benzene hydroxylation, hexanes and alcohols oxidation were used for evaluating the properties of vanadium incorporated MFI zeolite.

  • PDF

Nitrate Reduction without Ammonium Release using Fe-loaded Zeolite

  • Lee Seunghak;Lee Kwanghun;Lee Sungsu;Park Junboum
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Nitrate reduction with zero valent iron $(Fe^0)$ has been extensively studied, but the proper treatment for ammonium byproduct has not been reported yet. In groundwater, however, ammonium is regarded as contaminant species, and particularly, its acceptable level is regulated to 0.5 mg-N/L. for drinking water. This study is focused on developing new material to reduce nitrate and properly remove ammonium by-products. A new material, Fe-loaded zeolite, is derived from zeolite modified by Fe(II) chloride followed by reduction with sodium borohydride. Batch experiments were performed without buffer at two different pH to evaluate the removal efficiency of Fe-loaded zeolite. After 80 hr reaction time, Fe loaded zeolite showed about $60\%$ nitrate removal at initial pH of 3.3 and $40\%$ at pH of 6 with no ammonium release. Although iron filing showed higher removal efficiency than Fe-loaded zeolite at each pH, it released a considerable amount of ammonium stoichiometrically equivalent to that of reduced nitrate. In terms of nitrogen species including $NO_3-N$ and $NH_4^+-N$, Fe-loaded zeolite removed about $60\%\;and\;40\%$ of nitrogen in residual solution at initial pH of 3.3 and 6, respectively, while the removal efficiency of iron filing was negligible.

Mechanical, durability and microstructure properties of concrete containing natural zeolite

  • Nas, Memduh;Kurbetci, Sirin
    • Computers and Concrete
    • /
    • v.22 no.5
    • /
    • pp.449-459
    • /
    • 2018
  • Concrete is one of the most widely used construction materials in the world. Producing economical and durable concrete is possible by employing pozzolanic materials. The aim of this study is to underline the possibility of the utilization of natural zeolite in producing concrete and investigate its effects basically on the strength and durability of concrete. In the production of concrete mixes, Portland cement was replaced by the natural zeolite at ratios of 0%, 10%, 15%, and 20% by weight. Concretes were produced with total binder contents of $300kg/m^3$ and $400kg/m^3$, but with a constant water to cement ratio of 0.60. In addition to compressive and flexural strength measurements, freeze-thaw and high temperature resistance measurements, rapid chloride permeability, and capillary water absorption tests were performed on the concrete mixes. Compared to the rest mixes, concrete mixes containing 10% zeolite yielded in with the highest compressive and flexural strengths. The rapid chloride permeability and the capillary measurements were decreased as the natural zeolite replacement was increased. Freeze-thaw resistance also improved significantly as the replacement ratio of zeolite was increased. Under the effect of elevated temperature, natural zeolite incorporated concretes with lower binder content yielded higher compressive strength. However, the compressive strengths of concretes with higher binder content after elevated temperature effect were found to be lower than the reference concrete.

Absorption and Strength Properties of Landscape Paving Concrete According to Zeolite Coarse Aggregate Replacement Rate (제올라이트 굵은골재 대체율에 따른 조경포장 콘크리트의 흡수 및 강도 특성)

  • Na, Ok-Pin;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.131-139
    • /
    • 2021
  • This study assessed the use of zeolite with high absorption performance in landscape paving concrete as a substitute for aggregate. The absorption performance and strength properties of paving concrete were investigated according to the replacement rate of the zeolite coarse aggregate, and the mechanical properties were investigated through strength tests. The absorption rate of the zeolite aggregate was 14%, which is 2.5 times higher than that of general aggregate. When zeolite coarse aggregate is applied to paving concrete, the absorption rate increases according to the replacement rate. The absorption rate was 5.2% at a replacement rate of 50%, which was 42% higher than that of general paving concrete. The compressive strength increased to 20% of the replacement rate and decreased at a higher replacement, but all the strengths in the construction standard code were satisfied. The flexural strength satisfied the code up to a replacement rate of 10%, but the strength decreased with increasing replacement rate, and the splitting tensile strength was greater than that of paving concrete using general aggregate up to a 20% replacement rate. Overall, zeolite coarse aggregate can be applied as a substitute.