• Title/Summary/Keyword: ZVS-PWM Converter

Search Result 171, Processing Time 0.022 seconds

A Novel Three-Level ZVS PWM Inverter Topology for High-Voltage DC/DC Conversion Systems with Balanced Voltage Sharing and Wider Load Range (차단전압 균형과 넓은 부하범위를 갖는 새로운 3-레벨 ZVS PWM DC-DC 컨버터)

  • 송인호;유상봉;서범석;현동석
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.71-75
    • /
    • 1996
  • As the Three-level ZVS PWM DC-DC converter operates likewise full-bridge ZVS PWM DC-DC converter and the blocking voltage of each switching device is a half of the DC-link voltage, it is suitable for the high imput voltage applications. However, it has some problems as follows; The blocking voltage of each devices is unbalanced and it causes the power losses of the inner switching devices to be increased. Also, it has narrow load range so that the switching losses and the efficiency are reduced as it goes to the light load. This paper presents an nove Three-level ZVS PWM DC-DC converter, which can reduce the overvoltage of the outer switches, eliminate the unbalance of the voltage sharing between the switches at turn-off due to the stray inductances, and operate from no load to full load. The characteristics and the performances of the proposed Three-level ZVS PWM DC-DC converter are verified by simulation and experimental results

  • PDF

A Study on the 300KHz ZVS Full Bridge PWM Converter (300KHz ZVS Full Bridge PWM 컨버터에 관한 연구)

  • 주형준;김의찬;최재동;손승찬;성세진
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.111-115
    • /
    • 1997
  • This Paper is concerned on developing DC-DC converter using ZVS-FB-PWM Converter. The converter output is 28V and regulated by phase shift control methode. MOSFET is used by the main switching device and high frequency transfomer is made for operating at 300㎑ switching frequency. When the load vary widely, converter's ZVS characteristic is expressed by experiment result.

  • PDF

ZVS Operating Range Extension Method for High-Efficient High Frequency Linked ZVS-PWM DC-DC Power Converter

  • Sato S.;Moisseev S.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.227-230
    • /
    • 2003
  • In this paper, a full bridge edge-resonant zero voltage mode based soft-switching PWM DC-DC power converter with a high frequency center tapped transformer link stage is presented from a practical point of view. The power MOSFETS operating as synchronous rectifier devices are implemented in the rectifier center tapped stage to reduce conduction power losses and also to extend the transformer primary side power MOSFETS ZVS commutation area from the rated to zero-load without a requirement of a magnetizing current. The steady-state operation of this phase-shift PWM controlled power converter is described in comparison with a conventional ZVS phase-shift PWM DC-DC converter using the diodes rectifier. Moreover, the experimental results of the switching power losses analysis are evaluated and discussed in this paper. The practical effectiveness of the ZVS phase-shift PWM DC-DC power converter treated here is actually proved by using 2.5kW-32kHz breadboard circuit. An actual efficiency of this converter is estimated in experiment and is achieved as 97$\%$ at maximum.

  • PDF

A Design of Driving Circuit for Microwave oven using Phase-shifted FB-ZVS PWM Switching (Phase-shifted FB-ZVS PWM 스위칭을 이용한 Micorwave oven 구동회로 설계)

  • 이완윤;정교범;신판석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.265-272
    • /
    • 2001
  • The traditional 60[Hz] power supply for during magnetron in microwave oven has disadvantages of heavy weight and low efficiency due to 60[Hz] High Voltage Transformer(HVT), capacitor and th phase control of thyristors. To alleviate these disadvantages, this paper proposes a 20[kHz] phase-shifted Full-Bridge(FB) Zero-Voltage-Switched(ZVS) PWM converter for driving a 600[W] magnetron in an 1[kW] microwave oven. The proposed converter has advantages of light weight and high power density.

  • PDF

A NOVEL ZVS-CV PWM AC-DC CONVERTER

  • Yan, Baiping;Chen, Zhiming;Liu, Jian
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.709-712
    • /
    • 1998
  • A new ZVS-CV PWM converter with power factor correction (PFC) function is presented in this paper. The new topology is a integration of a boost converter and a ZVS-CV topology in a single power conversion stage. The new converter can be regulated in pulse-width modulation (PWM) by universal integrated control circuits. Some design considerations are given in detail. A laboratory prototype has been implemented to show the feasibility of the approach and the analysis.

  • PDF

A New ZVS-PWM Full-Bridge Boost Converter

  • Baei, Mohammadjavad;Narimani, Mehdi;Moschopoulos, Gerry
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.237-248
    • /
    • 2014
  • Pulse-width modulated (PWM) full-bridge boost converters are used in applications where the output voltage is considerably higher than the input voltage. Zero-voltage-switching (ZVS) is typically implemented in these converters. A new ZVS-PWM full-bridge converter is proposed in this paper. The proposed converter does not have any of the disadvantages associated with other converters of this type, including a complicated auxiliary circuit, increased current stresses in the main power switches, and load-dependent ZVS operation. The operation of the proposed converter, its steady-state characteristics, and its design are explained and examined. The feasibility of the converter is confirmed with results obtained from an experimental prototype.

ZVS PWM Converter For Battery Charger (배터리 충전기용 영전압 PWM 컨버터)

  • 정규범
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.375-381
    • /
    • 1998
  • Zero Voltage Switched (ZVS) Pulse Width Modulation (P~마1) converter which operates a fixed frequency is proposed in this paper. The main switches of the converter are always switched at zero voltage, and the auxiliaη switches are s softly switched, The voltage and current stresses of the switches are minimized as low as in conventional PWM converters, The suggested buck typed converter is analyzed. designed for a battery charger. The designed characteristics are experimentally verified by the results of the buck type converter.

  • PDF

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber

  • Ogura K.;Chandhaket S;Nagai S;Ahmed T;Nakaoka M
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.223-226
    • /
    • 2003
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge-resonant snubber which is used for power conditioner such as solar photovoltaic generation and fuel cell generation. The experimental results of boost chopper fed ZVS-PWM DC-DC converter are evaluated. In audition to its switching voltage and current waveforms, and the switching v-i trajectory of the power devices are discussed and compared with the conventional hard switching DC-DC converter treated here. The temperature performance of IGBT module,, efficiency, and EMI noise characteristics of this ZVS-PWM DC-DC converter using IGBTs are measured and evaluated from an experimental point of view.

  • PDF

A ZVS-PWM Active-Clamping DC/DC Boost Converter (능동 클램프회로가 있는 영전압 PWM 방식을 이용한 DC-DC 승압형 컨버터)

  • 김태우;김기주;김학성;안희욱
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.622-625
    • /
    • 1999
  • This paper introduces a novel zero-voltage switching (ZVS)) pulse width modulation (PWM) active clamping dc-to-dc boost converter. This technique presents ZVS commutation without additional voltage stress and a significant increase in the circulating reactive energy throughout the converter. Therefore, all of the losses for the switches are minimized, and high power density system can be realized. The characteristics are verified through simulation and experimental results.

  • PDF

Circuit Properties of Zero-Voltage-Transition PWM Converters

  • Ostadi, Amir;Gao, Xing;Moschopoulos, Gerry
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.35-50
    • /
    • 2008
  • A zero-voltage-transition (ZVT) pulse width modulated (PWM) converter is a PWM converter with a single main power switch that has an auxiliary circuit to help it turn on with zero-voltage switching (ZVS). There have been many ZVT-PWM converters proposed in the literature as they are the most popular type of ZVS-PWM converters. In this paper, the properties and characteristics of several types of ZVT-PWM converters are reviewed. A new type of ZVT-PWM converter is then introduced, and the operation of a sample converter of this type is explained and analyzed in detail. A procedure for the design of the converter is presented and demonstrated experimentally. The feasibility of the new converter is confirmed with results obtained from an experimental prototype. Conclusions on the performance of ZVT-PWM converters in general are made based on the efficiency results obtained from the experimental prototypes of various ZVT-PWM converters of different types.