• Title/Summary/Keyword: ZCS-PWM converter

Search Result 73, Processing Time 0.026 seconds

Elimination of harmonics in three-Phase PWM inverter using auxiliary partial resonant circuit (보조부분 공진 회로를 이용한 삼상 PWM 인버터의 고조파 제거)

  • Suh, Ki-Young;Lee, Hyun-Woo;Kim, Young-Mun;Mun, Sang-Pil
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.137-140
    • /
    • 1998
  • A new SPWM inverter using three-phase boost converter by auxiliary partial resonant with high power factor and high efficiency is proposed. The proposed boost converter is constructed by using a resonant network in parallel with the switch of the conventional boost converter. The devices are switched at zero voltage or zero current eliminating the switching loss. A new Partial resonant boost converter achieves zero-voltage switching (ZVS) or zero-current switching (ZCS) for all switch devices without increasing their voltage and current stresses. This paper introduces elimination of low-order harmonics compared with conventional SPWM inverter and SPWM inverter using three-phase boost converter by auxiliary Partial resonant.

  • PDF

ZCS-PWM Boost Converter Dropped Voltage and Current Stress of a Free-Wheeling Diode (환류 다이오드의 전압, 전류스트레스가 강하된 ZCS-PWM Boost Converter)

  • Kim, Myung-O;Kim, Young-Seok;Lee, Gun-Haeng
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.540-546
    • /
    • 2005
  • This paper presents a boost circuit topology driving in high - frequency It solves the problem which arised from hard-switching in high-frequency using a period of resonant circuit and operating under the principle of ZCS turn-on and ZCZVS turn-off commutation schemes. In the existing circuit, it has the high voltage and current stress in free- wheeling diode. But in the proposed circuit, it has voltage and current stress which is lower than voltage and current stress of existing circuit with modifing a location of free-wheeling diode. In this paper, it explained the circuit operation of each mode and the waveform of each mode. Also the experiment results compare the voltage and current stress of free-wheeling diode in the existing circuit with the voltage and current stress of that in the proposed circuit. Moreover, it compares and analyzes the proposed circuit's efficiency with the existing circuit's efficiency according to the change of load current.

New ZVZCS PWM DC-DC Converters with One Auxiliary Swithch (단일 보조 스위치를 이용한 새로운 ZVZCS PWM DC-DC 컨버터)

  • Ryu, Seung-Hui;Lee, Dong-Yun;Yu, Sang-Bong;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.188-194
    • /
    • 2000
  • This paper presents new Zero-Voltage-/Zero-Current-Switching (ZVZCS) PWM DC-DC converters. The proposed soft-switching technique achieves ZVS and ZCS simultaneously at both turn-on and turn-off of the main switch and diode by using only one auxiliary switch. Also, the proposed soft-switching technique is suitable for not only minority but also majority carrier semiconductor devices. The auxiliary circuit of the proposed topology is placed out the main power path and therefore, there are no voltage/current stresses on the main switch and diode. The operating principle of the proposed topology is illustrated by a detailed study with a boost converter as an example. Theoretical analysis, simulation and experimental results are presented to explain the proposed schemes.

  • PDF

Active Controlled Primary Current Cutting-Off ZVZCS PWM Three-Level DC-DC Converter

  • Shi, Yong
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.375-382
    • /
    • 2018
  • A novel active controlled primary current cutting-off zero-voltage and zero-current switching (ZVZCS) PWM three-level dc-dc converter (TLC) is proposed in this paper. The proposed converter has some attractive advantages. The OFF voltage on the primary switches is only Vin/2 due to the series connected structure. The leading-leg switches can obtain zero-voltage switching (ZVS), and the lagging-leg switches can achieve zero-current switching (ZCS) in a wide load range. Two MOSFETs, referred to as cutting-off MOSFETs, with an ultra-low on-state resistance are used as active controlled primary current cutting-off components, and the added conduction loss can be neglected. The added MOSFETs are switched ON and OFF with ZCS that is irrelevant to the load current. Thus, the auxiliary switching loss can be significantly minimized. In addition, these MOSFETs are not series connected in the circuit loop of the dc input bus bar and the primary switches, which results in a low parasitic inductance. The operation principle and some relevant analyses are provided, and a 6-kW laboratory prototype is built to verify the proposed converter.

ZVS-PWM Boost Chopper-Fed DC-DC Converter with Load-Side Auxiliary Edge Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • This paper presents a high-frequency ZVS-PWM boost chopper-fed DC-DC converter with a single active auxiliary edge resonant snubber in the load-side which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of ZVS-PWM boost chopper-fed DC-DC converter proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory, the temperature performance of IGBT module, the actual power conversion efficiency and the EMI of radiated and conducted emissions. And then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn off mode transition with the aid of an additional lossless clamping diode loop, and reduced the EMI conducted emission in this paper.

ZCS-PWM Converter dropped Voltage Stress of Free-Wheeling Diode (환류 다이오드의 전압스트레스가 강하된 ZCS-PWM Converter)

  • Kim Myung-O;Kim Young-Seok;Lee Gun-Haeng
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1187-1189
    • /
    • 2004
  • This paper presents a boost circuit topology driving in high - frequency. It solves the problem which arised from hard-switching in high-frequency using a period of resonant circuit and operating under the principle of ZCS turn-on and ZCZVS turn-off commutation schemes. In the existing circuit, it has the high voltage stress in free-wheeling diode. But in the proposed circuit, it has voltage stress which is lower than voltage stress of existing circuit with modifing a location of free-wheeling diode. In this paper, it explained the circuit operation of each mode and the waveform of each mode. Also the experiment result compares the existing voltage stress of free-wheeling diode with the proposed voltage stress of that.

  • PDF

A Novel Quasi-Resonant Snubber-Assisted ZCS-PWM DC-DC Converter with High Frequency Link

  • Fathy, Khairy;Kwon, Soon-Kurl
    • Journal of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.124-131
    • /
    • 2007
  • In this paper, a novel type of auxiliary switched capacitor assisted edge resonant soft switching PWM resonant DC-DC converter with two simple auxiliary commutation lossless inductor snubbers is presented. The operation principle of this converter is described using the switching mode equivalent circuits. This newly developed multi resonant DC-DC converter can regulate its DC output AC power under a principle of constant frequency edge-resonant soft switching commutation by an asymmetrical PWM duty cycle control scheme. The high frequency power regulation and actual power characteristics of the proposed soft switching PWM resonant DC-DC converter are evaluated and discussed. The operating performances of the newly proposed soft switching inverter are represented based on simulation results from an applications point of view.

High-Frequency Soft-Switching PWM DC-DC Power Converter for Low Voltage Large Current Applications

  • Muraoka Hidekazu;Sakamoto Kenya;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.198-202
    • /
    • 2001
  • This paper presents a novel prototype version of ZCS-PWM forward DC-DC power converter using power MOSFETs which is designed for application specific low voltage large current conversion operation. The soft-switching forward power converter with a high frequency isolated transformer link which can efficiency operate over wide load ranges under two conditions of ZCS as well as active voltage clamped switching is evaluated and discussed on the basis of the simulation and experimental results.

  • PDF

Optimal Design of a DC-DC Converter for Photovoltaic Generation

  • Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.3
    • /
    • pp.40-49
    • /
    • 2011
  • This paper presents novel circuit topology of half-bridge soft-switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed, half-bridge high frequency PWM inverter with a high frequency planar transformer link PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode-equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC bus lines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, high switching frequency IGBTs can actually be selected in the frequency range of 40[kHz] under the principle of soft-switching. The performance evaluations of the experimental setup are illustrated practically.

Implementation of an Interleaved AC/DC Converter with a High Power Factor

  • Lin, Bor-Ren;Lin, Li-An
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.377-386
    • /
    • 2012
  • An interleaved bridgeless buck-boost AC/DC converter is presented in this paper to achieve the characteristics of low conduction loss, a high power factor and low harmonic and ripple currents. There are only two power semiconductors in the line current path instead of the three power semiconductors in a conventional boost AC/DC converter. A buck-boost converter operated in the boundary conduction mode (BCM) is adopted to control the active switches to achieve the following characteristics: no diode reverse recovery problem, zero current switching (ZCS) turn-off of the rectifier diodes, ZCS turn-on of the power switches, and a low DC bus voltage to reduce the voltage stress of the MOSFETs in the second DC/DC converter. Interleaved pulse-width modulation (PWM) is used to control the switches such that the input and output ripple currents are reduced such that the output capacitance can be reduced. The voltage doubler topology is adopted to double the output voltage in order to extend the useable energy of the capacitor when the line voltage is off. The circuit configuration, principle operation, system analysis, and a design example are discussed and presented in detail. Finally, experiments on a 500W prototype are provided to demonstrate the performance of the proposed converter.