• Title/Summary/Keyword: Z-shape design

Search Result 59, Processing Time 0.022 seconds

A Phantom study of Displacement of Three Dimensional Volume Rendering for Clinical Application in Radiation Treatment Planning (방사선치료계획의 임상적용을 위한 3차원 볼륨렌더링영상 체적변화의 모형연구)

  • Goo, Eun-Hoe;Lee, Jae-Seung;Lim, Cheong-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.280-288
    • /
    • 2009
  • This study is to design and produce a detailed model for volume variety of three dimensional reconstruction images and to evaluate the changes of volume, area and the length of the model in the process of the reconstruction of RTP system. CT simulation was operated at the thickness of 1.25, 2.5, 5, 10mm and average, standard deviation of scan direction(X), thickness(Y), table movement direction(Z), area(A), and volume(V) of the three dimensional volume rendering, were measured according to the shape and thickness of the phantoms. As a result, at the thickness of 1.25, 2.5min, the phantom's shape decreased maximum 0.13cm(p<0.05) to the direction of X, Y, Z and length, area, volume decreased 0.1cm, $0.8cm^2$, $3.99cm^3$ which led to an approximate image of the phantoms. However, at the thickness of 5, 10mm, the phantom of the original form decreased maximum 0.58cm(p<0.05) and volume, area, length decreased maximum 0.45cm, $8.21cm^2$, $11.03cm^3$. Volume varieties according to the thickness and shape of the phantoms have occurred diversely, when CT simulation was operated, and it is considered that a clinically appropriate volume rendering can be obtained only when the thickness is below 3mm.

Analytical Study on Hybrid Prefabricated Retrofit Method for Reinforced Concrete Beams (철근 콘크리트 보의 보강을 위한 하이브리드 조립형 보강기법에 관한 해석적 연구)

  • Moon, Sang-Pil;Lee, Sung-Ho;Lee, Young-Hak;Kim, Min-Sook
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.71-79
    • /
    • 2020
  • In this paper, the hybrid prefabricated retrofit method that improve structural performance and reduce construction period was developed by using a finite element analysis. The hybrid prefabricated retrofit method consist of a Z-shaped side plate, a L-shaped lower plate, and a bottom plate containing an steel plate with openings. This shape has advantage that a retrofit method is possible regardless of the size of the beams and a follow-up process such as reinforcement bars placing are not required. The finite element analysis of hybrid Prefabricated retrofit method showed the most ideal stress distribution when the thickness of bottom plate was 10mm, the thickness of the L-shaped lower plate was 5mm, the thickness of the Z-shaped side plate was 2.5mm, and the bolt spacing was 200mm. The bending strength equation of Hybrid prefabricated retrofit method was proposed through the plastic stress distribution method in KDS 41 31 00. The result of Comparison the proposed equation with the finite element analysis, it is determined that the design of hybrid prefabricated retrofit method is possible through the KDS 41 31 00.

Accuracy of the Point-Based Image Registration Method in Integrating Radiographic and Optical Scan Images: A Pilot Study

  • Mai, Hai Yen;Lee, Du-Hyeong
    • Journal of Korean Dental Science
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2020
  • Purpose: The purpose of this study was to investigate the influence of different implant computer software on the accuracy of image registration between radiographic and optical scan data. Materials and Methods: Cone-beam computed tomography and optical scan data of a partially edentulous jaw were collected and transferred to three different computer softwares: Blue Sky Plan (Blue Sky Bio), Implant Studio (3M Shape), and Geomagic DesignX (3D systems). In each software, the two image sets were aligned using a point-based automatic image registration algorithm. Image matching error was evaluated by measuring the linear discrepancies between the two images at the anterior and posterior area in the direction of the x-, y-, and z-axes. Kruskal-Wallis test and a post hoc Mann-Whitney U-test with Bonferroni correction were used for statistical analyses. The significance level was set at 0.05. Result: Overall discrepancy values ranged from 0.08 to 0.30 ㎛. The image registration accuracy among the software was significantly different in the x- and z-axes (P=0.009 and <0.001, respectively), but not different in the y-axis (P=0.064). Conclusion: The image registration accuracy performed by a point-based automatic image matching could be different depending on the computer software used.

Numerical Analysis of Thermal Deformation of a PCB for Semiconductor Package at Panel, Strip and Unit Levels (수치해석을 이용한 판넬과 스트립 및 유닛 레벨 반도체 패키지용 PCB의 열변형 해석)

  • Cho, Seunghyun;Ko, Youngbae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.23-31
    • /
    • 2019
  • In this study, we conducted numerical analyses using the Taguchi method and finite element method to calculate the thermal deformation of a printed circuit board and the effect of design factors on the thermal deformation. Analysis results showed that the thermal deformation of the panel had the strongest effect on the thermal deformation and shape of the strip and unit. In particular, the deformation in the z direction was larger than that in the xy-plane direction. The effect of design factors and the design conditions for reducing the thermal deformation of the panel and strip changed at the unit level. Therefore, it is recommended that panel-level thermal deformation must be controlled to reduce the final thermal deformation at the unit level because the thermal deformation of the strip strongly affects that of the unit.

Design of Magnetic Systems for SNUT-79 Tokamak (SNUT-79 토카막의 자장 계통 설계)

  • Cheol Hee Nam;Sang Hee Hong;Kie Hyung Chung;Sang Ryul In
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.89-96
    • /
    • 1984
  • A toroidal-field (TF) coil with a pure tension D-shape curve is designed for the confinement of high-temperature plasmas in the SNUT-79, which is a tokamak being built at Seoul National University. A toroidal assembly of 16 D-shape TF coils is designed to produce the magnetic field of up to 3T, of which ripples appear to be below 4% of the average toroidal field in the plasma region. Exact positions and currents in six equilibrium coils distributed symmetrically in the z=0 plane are found by the solution of a set of linear equations which is transformed from a Fredholm integral equation of the first kind. The decay indices resulted from equilibrium field indicate that the stability condition for vertical and horizontal displacements is satisfied.

  • PDF

Modified pendular vibration absorber for structures under base excitation

  • Pezo Eliot, Z.;Goncalves, Paulo B.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.161-172
    • /
    • 2018
  • The passive control of structures using a pendulum tuned mass damper has been extensively studied in the technical literature. As the frequency of the pendulum depends only on its length and the acceleration of gravity, to tune the frequency of the pendulum with that of the structure, the pendulum length is the only design variable. However, in many cases, the required length and the space necessary for its installation are not compatible with the design. In these cases, one can replace the classical pendulum by a virtual pendulum which consists of a mass moving over a curved surface, allowing thus for a greater flexibility in the absorber design, since the length of the pendulum becomes irrelevant and the shape of the curved surface can be optimized. A mathematical model for a building with a pendular tuned mass damper and a detailed parametric analysis is conducted to study the influence of this device on the nonlinear oscillations and stability of the main system under harmonic and seismic base excitation. In addition to the circular profiles, different curved surfaces with softening and hardening characteristics are analyzed. Also, the influence of impact on energy dissipation is considered. A detailed parametric analysis is presented showing that the proposed damper can not only reduce sharply the displacements, and consequently the internal forces in the main structure, but also the accelerations, increasing user comfort. A review of the relevant aspects is also presented.

A study on the improvement of static characteristic In claw poled permanent magnet stepping motor (Claw Pole 영구자석형 스테핑 모터의 정특성 향상에 관한 연구)

  • Jung, Dae-Sung;Lim, Seung-Bin;Kim, Tae-Heoung;Lee, Ju;Kwon, Ho;Son, Yeoung-Gyu;Choi, Seung-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1288-1290
    • /
    • 2005
  • This paper analyzed the characteristics of the claw pole PM step motor by using 3D FEM. As the magnetization occurs along the z-axis of the motor, it is necessary to apply 3D FEM for analysis of the claw pole PM step motor. Considering the computation time, however, the number of the analysis model is minimized by using the "Design of Experiments(DOE)". By using the "DOE", efficient analysis was able to be done. To see the effects of the design factors, the 3D FEM is applied only to the selected models. As the design factors, the teeth shape, the number of turns and the permanent magnet overhang was selected.

  • PDF

Development and validation of a numerical model for steel roof cladding subject to static uplift loads

  • Lovisa, Amy C.;Wang, Vincent Z.;Henderson, David J.;Ginger, John D.
    • Wind and Structures
    • /
    • v.17 no.5
    • /
    • pp.495-513
    • /
    • 2013
  • Thin, high-strength steel roof cladding is widely used in residential and industrial low-rise buildings and is susceptible to failure during severe wind storms such as cyclones. Current cladding design is heavily reliant on experimental testing for the determination of roof cladding performance. Further study is necessary to evolve current design standards, and numerical modelling of roof cladding can provide an efficient and cost effective means of studying the response of cladding in great detail. This paper details the development of a numerical model that can simulate the static response of corrugated roof cladding. Finite element analysis (FEA) was utilised to determine the response of corrugated cladding subject to a static wind pressure, which included the anisotropic material properties and strain-hardening characteristics of the thin steel roof cladding. The model was then validated by comparing the numerical data with corresponding experimental test results. Based on this comparison, the model was found to successfully predict the fastener reaction, deflection and the characteristics in deformed shape of the cladding. The validated numerical model was then used to predict the response of the cladding subject to a design cyclone pressure trace, excluding fatigue effects, to demonstrate the potential of the model to investigate more complicated loading circumstances.

Study on Development of Parallel-Typed Tilting Table (병렬기구형 틸팅 테이블의 개발에 관한 연구)

  • Lee, Won-Chul;Kim, Tae-Sung;Park, Kun-Woo;Lee, Min-Ki
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.734-739
    • /
    • 2001
  • In this paper, we develop a six-axes machining center tool(MCT) and CAD/CAM system. The MCT consists of two mechanical parts, i.e., a X-Y-Z Cartesian coordinate typed MCT and a parallel-typed tilting table. Kinematics and singularity are accomplished to design the parallel-typed tilting table, and CAD/CAM system is developed for the six-axes MCT, which requires the commands of position as well as orientation for machining of complex shape. The CAD/CAM system has a tool path generator, a NC code generator and a graphic simulator. This paper designs the parallel-typed tilting table to meet the desired specification and presents the results of tool path, NC code and graphic simulation.

  • PDF

Characteristic Analysis of Permanent Magnet Type Step Motor with claw poles by using 3 dimensional Finite Element Method (3차원 유한요소법을 이용한 영구자석형(PM) Claw pole 스텝 모터의 특성 해석)

  • Lim Seung-Bin;KIM Tae-Heoung;Jung Dae-Sung;Lee Ju;Kwon Ho;Son Yeoung-Gyu;Kim Yun-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.749-751
    • /
    • 2004
  • This paper analyzed the characteristics of the claw pole PM step motor by using 3D FEM. In case of analysing this type of motor, 3 dimensional analysis is necessary for an accurate analysis due to the magnetizing component of the z-axis direction. As a main design variable, the magnetization, width and the effects of skewing was selected. The variation of the detent torque and the back EMF depending on the shape of the pole is also shown.

  • PDF