• Title/Summary/Keyword: Z - R relation

Search Result 51, Processing Time 0.026 seconds

A Simple Approach to the Ionic-Covalent Bond Based on the Electronegativity and Acid Strength of Cations. Part One:Calculation of the Electronegativity and Acid Strength

  • Josik Portier;Guy Campet
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.8
    • /
    • pp.427-436
    • /
    • 1997
  • A simple relation exists between electronegativities of cations and their oxidation states and ionic radii. An empirical law is proposed: X = 0.274 z-0.15 z r - 0.01 r+1+${\alpha}$, z being oxidation number, r ionic radius in $\AA$ and ${\alpha}$ a term related to the atomic number. this relation permits to calculate an electronegativity scale covering a large set of electronic and crystallographic situations. An application to the calculation of acid strengths of cations is presented.

  • PDF

A Comparative Study of the Rainfall Intensity Between Ground Rain Gauge and Weather Radar (지상우량계와 기상레이더 강우강도의 비교연구)

  • Ryu, Chan-Su;Kang, In-Sook;Lim, Jae-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.229-237
    • /
    • 2011
  • Today they use a weather radar with spatially high resolution in predicting rainfall intensity and utilizing the information for super short-range forecast in order to make predictions of such severe meteorological phenomena as heavy rainfall and snow. For a weather radar, they use the Z-R relation between the reflectivity factor(Z) and rainfall intensity(R) by rainfall particles in the atmosphere in order to estimate intensity. Most used among the various Z-R relation is $Z=200R^{1.6}$ applied to stratiform rain. It's also used to estimate basic rainfall intensity of a weather radar run by the weather center. This study set out to compare rainfall intensity between the reflectivity of a weather radar and the ground rainfall of ASOS(Automatic Surface Observation System) by analyzing many different cases of heavy rain, analyze the errors of different weather radars and identify their problems, and investigate their applicability to nowcasting in case of severe weather.

Polynomial matrix decomposition in the digital domain and its application to MIMO LBR realizations (디지탈 영역에서의 다항식 행렬의 분해와 MIMO LBR 구현에의 응용)

  • 맹승주;임일택;이병기
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.115-123
    • /
    • 1997
  • In this paper we present a polynomial matrix decomposition algorithm that determines a polynomial matix M(z) which satisfies the relation V(z)=M(z) for a given polynomial matrix V(z) which is paraconjugate hermitian matrix with normal rank r and is positive semidenfinite on the unit circle of z-plane. All the decomposition procedures in this proposed method are performed in the digitral domain. We also discuss how to apply the polynomial matirx decomposition in realizing MIMO LBR two-pairs.

  • PDF

SOME PROPERTIES OF GENERALIZED HYPERGEOMETRIC FUNCTION

  • Rao, Snehal B.;Patel, Amit D.;Prajapati, Jyotindra C.;Shukla, Ajay K.
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.303-317
    • /
    • 2013
  • In present paper, we obtain functions $R_t(c,{\nu},a,b)$ and $R_t(c,-{\mu},a,b)$ by using generalized hypergeometric function. A recurrence relation, integral representation of the generalized hypergeometric function $_2R_1(a,b;c;{\tau};z)$ and some special cases have also been discussed.

Estimation of the Z-R Relation through the Disdrometer for the Coastal Region in the Northeast of Brazil

  • Tenorio, Ricardo Sarmento;Moraes, Marcia Cristina da Silva;Quintao, Demilson de Assis;Kwon, Byung-Hyuk;Yoon, Ill-Hee
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.30-35
    • /
    • 2003
  • The preliminary results of the study on the physics of rain using disdrometer data are shown for an area located on the northern coastal board of Macei${\acute{o}}$, Alagoas (9$^{\circ}$33'17.24' and 35$^{\circ}$46'54.84' W), at approximately 80 meters above the sea level. The data were obtained during January 2002 using a disdrometer RD-69 (Joss-Waldvogel). After definining the criteria for determining rain type (convective and stratiform), a set of Z-R pairs was analyzed for estimating the Z-R relation for each rain type. The results were quite similar to those for other regions of the globe. This preliminary analysis will be used to study the structure of rain with the meteorological radar as well as to permit a better understanding of the physics of tropical rain.

Radar Rainfall Estimation Using Window Probability Matching Method : 1. Establishment of Ze-R Relationship for Kwanak Mt, DWSR-88C at Summer, 1998 (WPMM 방법을 이용한 레이더 강수량 추정 : 1. 1998년 여름철 관악산 DWSR-88C를 위한 Ze-R 관계식 산출)

  • Kim, Hyo-Gyeong;Lee, Dong-In;Yu, Cheol-Hwan;Gwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.25-36
    • /
    • 2002
  • Window Probability Matching Method(WPMM) is achieved by matching identical probability density of rain intensities and radar reflectivities taken only from small window centered about the gage. The equation of $Z_{e}-R$ relationship is obtained and compared with data between a DWSR-88C radar and high density rain gage networks within 150km from radar site in summer season, 1998. The probability density of radar effective reflectivity is distributed with high frequency near 15dBZ. The frequency distribution of rain intensities shows that rain intensity is lower than 10mm/hr in most part of radar coverage area. As the result of $Z_{e}-R$ relationship using WPMM, curved line has shown to the log scale spatially and it can be explained more flexible than any straight-line power laws at the transformation to the rainfall amount from $Z_e$ value. During 3 months, total radar cumulative rainfall amount estimated by $Z=200R^{1.6}$ and WPMM relationships are 44 and 80 percentages of total raingage amount, respectively. Therefore, $Z_{e}-R$ relationships by WPMM may be widely needed a statistical method for the computation of accumulated precipitation.

Study on the analysis of disproportionate data and hypothesis testing (불균형 자료 분석과 가설 검정에 관한 연구)

  • 장석환;송규문;김장한
    • The Korean Journal of Applied Statistics
    • /
    • v.5 no.2
    • /
    • pp.243-254
    • /
    • 1992
  • In the present study two sets of unbalanced two-way cross-classification data with and without empty cell(s) were used to evaluate empirically the various sums of squares in the analysis of variance table. Searle(1977) and Searle et.al.(1981) developed a method of computing R($\alpha$\mid$\mu, \beta$) and R($\beta$\mid$\mu, \alpha$) by the use of partitioned matrix of X'X for the model of no interaction, interchanging the columns of X in order of $\alpha, \mu, \beta$ and accordingly the elements in b. An alternative way of computing R($\alpha$\mid$\mu, \beta$), R($\beta$\mid$\mu, \alpha$) and R($\gamma$\mid$\mu, \alpha, \beta$) without interchanging the columns of X has been found by means of,$(X'X)^-$ derived, using $W_2 = Z_2Z_2-Z_2Z_1(Z_1Z_1)^-Z_1Z_2$. It is true that $R(\alpha$\mid$\mu,\beta,\gamma)\Sigma = SSA_W and R(\beta$\mid$\mu,\alpha,\gamma)\Sigma = SSB_W$ where $SSA_W$ and means analysis and $R(\gamma$\mid$\mu,\alpha,\beta) = R(\gamma$\mid$\mu,\alpha,\beta)\Sigma$ for the data without empty cell, but not for the data with empty cell(s). It is also noticed that for the datd with empty cells under W - restrictions $R(\alpha$\mid$\mu,\beta,\gamma)_W = R(\mu,\alpha,\beta,\gamma)_W - R(\mu,\alpha,\beta,\gamma)_W = R(\alpha$\mid$\mu) and R(\beta$\mid$\mu,\alpha,\gamma)_W = R(\mu,\alpha,\beta,\gamma)_W - R(\mu,\alpha,\beta,\gamma)_W = R(\beta$\mid$\mu) but R(\gamma$\mid$\mu,\alpha,\beta)_W = R(\mu,\alpha,\beta,\gamma)_W - R(\mu,\alpha,\beta,\gamma)_W \neq R(\gamma$\mid$\mu,\alpha,\beta)$. The hypotheses $H_o : K' b = 0$ commonly tested were examined in the relation with the corresponding sums of squares for $R(\alpha$\mid$\mu), R(\beta$\mid$\mu), R(\alpha$\mid$\mu,\beta), R(\beta$\mid$\mu,\alpha), R(\alpha$\mid$\mu,\beta,\gamma), R(\beta$\mid$\mu,\alpha,\gamma), and R(\gamma$\mid$\mu,\alpha,\beta)$ under the restrictions.

  • PDF

AN INVESTIGATION ON GEOMETRIC PROPERTIES OF ANALYTIC FUNCTIONS WITH POSITIVE AND NEGATIVE COEFFICIENTS EXPRESSED BY HYPERGEOMETRIC FUNCTIONS

  • Akyar, Alaattin;Mert, Oya;Yildiz, Ismet
    • Honam Mathematical Journal
    • /
    • v.44 no.1
    • /
    • pp.135-145
    • /
    • 2022
  • This paper aims to investigate characterizations on parameters k1, k2, k3, k4, k5, l1, l2, l3, and l4 to find relation between the class of 𝓗(k, l, m, n, o) hypergeometric functions defined by $$5_F_4\[{\array{k_1,\;k_2,\;k_3,\;k_4,\;k_5\\l_1,\;l_2,\;l_3,\;l_4}}\;:\;z\]=\sum\limits_{n=2}^{\infty}\frac{(k_1)_n(k_2)_n(k_3)_n(k_4)_n(k_5)_n}{(l_1)_n(l_2)_n(l_3)_n(l_4)_n(1)_n}z^n$$. We need to find k, l, m and n that lead to the necessary and sufficient condition for the function zF([W]), G = z(2 - F([W])) and $H_1[W]=z^2{\frac{d}{dz}}(ln(z)-h(z))$ to be in 𝓢*(2-r), r is a positive integer in the open unit disc 𝒟 = {z : |z| < 1, z ∈ ℂ} with $$h(z)=\sum\limits_{n=0}^{\infty}\frac{(k)_n(l)_n(m)_n(n)_n(1+\frac{k}{2})_n}{(\frac{k}{2})_n(1+k-l)_n(1+k-m)_n(1+k-n)_nn(1)_n}z^n$$ and $$[W]=\[{\array{k,\;1+{\frac{k}{2}},\;l,\;m,\;n\\{\frac{k}{2}},\;1+k-l,\;1+k-m,\;1+k-n}}\;:\;z\]$$.

Applicability Evaluation of Probability Matching Method for Parameter Estimation of Radar Rain Rate Equation (강우 추정관계식의 매개변수 결정을 위한 확률대응법의 적용성 평가)

  • Ro, Yonghun;Yoo, Chulsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1765-1777
    • /
    • 2014
  • This study evaluated PMM (Probability Matching Method) for parameter estimation of the Z - R relation. As a first step, the sensitivity analysis was done to decide the threshold number of data pairs and the data interval for the development of a histogram. As a result, it was found that at least 1,000 number of data pairs are required to apply the PMM for the parameter estimation. This amount of data is similar to that collected for two hours. Also, the number of intervals for the histogram was found to be at least 100. Additionally, it was found that the matching the first-order moment is better than the cumulative probability, and that the data pairs comprising 30 to 100% are better for the PMM application. Finally, above findings were applied to a real rainfall event observed by the Bislsan radar and optimal parameters were estimated. The radar rain rate derived by applying these parameters was found to be well matched to the rain gauge rain rate.

Mediating effect of communication ability in the relation between empathy and interpersonal relation in nursing students (간호대학생의 의사소통 능력과 대인관계에서 공감의 매개효과)

  • Jo, Eunhee;Kim, Hyun-Sook;Hwang, Soon-Jung
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.26 no.3
    • /
    • pp.290-298
    • /
    • 2020
  • Purpose: This study aimed to grasp the correlation between communication ability, empathy, and interpersonal relations among nursing students, and to explore the mediating effect of empathy on the relation between communication and interpersonal relation in nursing students. Methods: Participants were 209 college students in the Department of Nursing at two universities. The data collection period was from October 1, 2019 to November 1, 2019. The questionnaire consisted of measuring tools for general characteristics, communication ability, interpersonal relation and empathy. SPSS/23.0 program was used. The analysis used descriptive statistics, Pearson's correlation coefficient, independent t-test, one-way ANOVA, multiple regression analysis, and Sobel's tests. Results: The communication ability was nursing major satisfaction (t=8.25, p<.001), and last year's average grade (t=7.29, p=.001). Interpersonal relationships showed significant differences in gender (t=2.51, p=.013) and nursing major satisfaction (t=10.99, p<.001). Communication ability and empathy (r=.37, p<.001), communication ability and interpersonal relation (r=.77, p<.001), empathy and interpersonal relation (r=.43, p<.001) showed a significant static correlation. In communication ability and interpersonal relation, empathy had a partial mediating effect (Z=2.97, p<.001), and explanatory power was 62%. Conclusion: To improve the communication ability and interpersonal relation of nursing students, it is necessary to develop a personalized and empathy-enhanced education program for each grade.