• Title/Summary/Keyword: Young inequality

Search Result 296, Processing Time 0.031 seconds

Robust $H_{\infty}$ Controller for State and Input Delayed Systems with Structured Uncertainties (구조화된 불확실성과 상태와 입력에 시간지연이 있는 시스템을 위한 강인 $H_{\infty}$ 제어기)

  • Lee, Joon-Hwa;Moon, Young-Soo;Kwon, Wook-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.338-342
    • /
    • 1997
  • 본 논문에서는 상태와 입력에 시간지연과 구조화된 불확실성이 있는 시스템을 위한 강인 H/sub .inf./ 제어기를 제안한다. 제안된 제안기는 시간지연의 크기에 관계없이 항상 불확실한 시스템을 안정화시키고, 또한 제한된 크기의 어떤 구조화된 불확실성에 대해서도 항상 폐루프 전달함수의 H/sub .inf./ 노옴의 크기를 주어진 레벨 이하로 줄인다. 제어기는 볼록 최적화 알고리즘을 이용한 LMI 문제를 풀어서 구한다.

  • PDF

Sampled Fuzzy Controller for discrete networked control systems (샘플치 퍼지 제어기를 이용한 이산 퍼지 시스템 제어)

  • Kook, Song-Min;Bae, Park-Jin;Kim, Jong-Seon;Hoon, Joo-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1783-1784
    • /
    • 2008
  • This paper presents a novel control technique to deal with networked control systems with neutral timedelay, which is known to highly degrade the control performance of the controlled system. The stability analysis and design method for a sampled-data fuzzy controller for discrete networked control systems (NCS). The neutral time-delay and sampling activity will complicate the NCS. And it make the stability analysis much more difficult than that for a continuous-time NCS. Based on the fuzzy control approach, linear matrix inequality (LMI)-based stability conditions are derived to guarantee the neutral T-S fuzzy system stability. The simulation results and practical experiments illustrate that the proposed controller design is realistic.

  • PDF

Disturbance Observer Design for a Non-minimum Phase System That Is Stabilizable via PID Control (PID 제어기로 안정화 가능한 비최소 위상 시스템에 대한 외란 관측기 설계)

  • Son, Young-Ik;Kim, Sung-Jong;Jeong, Goo-Jong;Shim, Hyung-Bo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.9
    • /
    • pp.1612-1617
    • /
    • 2008
  • Since most disturbance observer (DOB) approaches have been limited to minimum-phase systems (or systems having no zero dynamics), we propose a new DOB structure that can be applied to non-minimum phase systems. The new structure features an additional system, which is called as V-filter, whose role is to yield a minimum phase system when connected with the plant in parallel. In order to design the V-filter systematically we first consider a class of linear systems that can be stabilized via PID controller. By inverting the controller's transfer function, we can simply construct the filter. A convenient way of designing V-filter is presented by using an iterative linear matrix inequality (LMI) algorithm. With an illustrative example the simulation result shows that substantial improvement in the performance has been achieved compared with the control system without the DOB.

Intelligent Digitally Redesigned Fuzzy Controller

  • Joo, Young-Hoon;Lee, Yeun-Woo;Cha, Dai-Bum;Oh, Jae-Heung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.220-226
    • /
    • 2002
  • In this paper, we develop the intelligent digitally redesigned fuzzy controller for nonlinear systems. Takagi-Sugeno (TS) fuzzy model is used to model the nonlinear systems and a continuous-time fuzzy-model-based controller is designed based on the extended parallel-distributed-compensation(EPDC) method . The digital controllers are determined from existing analogue controllers. The proposed method provides an accurate and effective method for digital control of continuous-time nonlinear systems and enables us to efficiently implement a digital controller via the pre-determined continuous-time 75 fuzzy-model-based controller. We have applied the proposed method to the duffing forced oscillation system to show the effectiveness and feasibility of the proposed method.

ADDITIVE ρ-FUNCTIONAL INEQUALITIES IN β-HOMOGENEOUS F-SPACES

  • LEE, HARIN;CHA, JAE YOUNG;CHO, MIN WOO;KWON, MYUNGJUN
    • The Pure and Applied Mathematics
    • /
    • v.23 no.3
    • /
    • pp.319-328
    • /
    • 2016
  • In this paper, we solve the additive ρ-functional inequalities (0.1) ||f(2x-y)+f(y-x)-f(x)|| $\leq$ ||${\rho}(f(x+y)-f(x)-f(y))$||, where ρ is a fixed complex number with |ρ| < 1, and (0.2) ||f(x+y)-f(x)-f(y)|| $\leq$ ||${\rho}(f(2x-y)-f(y-x)-f(x))$||, where ρ is a fixed complex number with |ρ| < $\frac{1}{2}$. Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-functional inequalities (0.1) and (0.2) in β-homogeneous F-spaces.

A control allocation sterategy based on multi-parametric quadratic programming algorithm

  • Jeong, Tae-Yeong;Ji, Sang-Won;Kim, Young-Bok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • Control allocation is an important part of a system. It implements the function that map the desired command forces from the controller into the commands of the different actuators. In this paper, the authors present an approach for solving constrained control allocation problem in vessel system by using multi-parametric quadratic programming (mp-QP) algorithm. The goal of mp-QP algorithm applied in this study is to compute a solution to minimize a quadratic performance index subject to linear equality and inequality constraints. The solution can be pre-computed off-line in the explicit form of a piecewise linear (PWL) function of the generalized forces and constrains. The efficiency of mp-QP approach is evaluated through a dynamic positioning simulation for a vessel by using four tugboats with constraints about limited pushing forces and found to work well.

Observer-based H Fuzzy Controller Design of Interval Type-2 Takagi-Sugeno Fuzzy Systems Under Imperfect Premise Matching (불완전한 전반부 정합 하에서의 관측기 기반 구간 2형 T-S 퍼지 시스템의 H 퍼지 제어기 설계)

  • Hwang, Sounghwan;Park, Jin Bae;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.11
    • /
    • pp.1620-1627
    • /
    • 2017
  • In this paper, we design an observer-based $H_{\infty}$ fuzzy controller for interval type-2 Takagi-Sugeno (T-S) fuzzy systems under imperfect premise matching. The designed observer-based controller can effectively estimate the state of the system and make fuzzy system satisfy the $H_{\infty}$ disturbance attenuation performance. Using the slack matrix, the derived stabilization condition is expressed in terms of a linear matrix inequality. Finally, the effectiveness of the proposed method is verified through a simulation example.

Intelligent Digital Redesign Based on Periodic Control

  • Kim Do Wan;Joo Young Hoon;Park Jin Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.378-381
    • /
    • 2005
  • This paper presents a new linear-matrix-inequality-based intelligent digital redesign (LMI-based IDR) technique to match the states of the analog and the digital T-S fuzzy control systems at the intersampling instants as well as the sampling ones. The main features of the proposed technique are: 1) the fuzzy-model-based periodic control is employed, and the control input is changed n times during one sampling period; 2) The proposed IDR technique is based on the approximately discretized version of the T-S fuzzy system, but its discretization error vanishes as n approaches the infinity. 3) some sufficient conditions involved in the state matching and the stability of the closed-loop discrete-time system can be formulated in the LMIs format.

  • PDF

Static Output Feedback Robust $H\infty$ Fuzzy Control of Discrete-Time Nonlinear Systems with Time-Varying Delay (시변 지연 이산 시간 비선형 시스템에 대한 정적 출력 궤환 $H\infty$ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2005.04a
    • /
    • pp.149-152
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time fuzzy systems with time-varying delay via static output feedback is investigated. The Takagi -Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear systems with time-varying delayed state. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities.

  • PDF

Intelligent Digital Redesign for Nonlinear Interconnected Systems using Decentralized Fuzzy Control

  • Koo, Geun-Bum;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.420-428
    • /
    • 2012
  • In this paper, a novel intelligent digital redesign (IDR) technique is proposed for the nonlinear interconnected systems which can be represented by a Takagi-Sugeno (T-S) fuzzy model. The IDR technique is to convert a pre-designed analog controller into an equivalent digital one. To develop this method, the discretized models of the analog and digital closed-loop system with the decentralized controller are presented, respectively. Using these discretized models, the digital decentralized control gain is obtained to minimize the norm between the state variables of the analog and digital closed-loop systems and stabilize the digital closed-loop system. Its sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to verify the effectiveness of the proposed technique.