• Title/Summary/Keyword: Young Modulus

Search Result 1,427, Processing Time 0.021 seconds

Manufacture of 3D Textile Preform and Study on Mechanical Properties of Composites (3D Textile 프리폼 제조 및 복합재료 기계적 특성 연구)

  • Jo, Kwang-Hoon;Klapper, Vinzenz;Kim, Hyeon-Woo;Lee, Jeong-Woon;Han, Joong-Won;Byun, Joon-Hyung;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • The aircraft composites wing parts are usually integrated with adhesive or fastener. These laminated composites have weak interlaminar strength, which can lead to delamination. In order to compensate the disadvantages of laminated composites, it is possible to improve the strength, durability, shock and fatigue resistance by reinforcing the fiber in the thickness direction. In addition, using a single structure near-net-shape saves the manufacturing time and the number of fasteners, thus can reduce the overall cost of the composite parts. In this study, compression test, tensile test and open-hole tensile test are carried out for three structural architecture of 3D (three-dimensional) textile preforms: orthogonal(ORT), layer-to-layer(LTL) and through-the-thickness(TTT) patterns. Among these, the orthogonal textile composite shows the highest Young's modulus and strength in tensile and compression. The notch sensitivity of the orthogonal textile composite was the smallest as compared with UD (unidirectional) and 2D (two-dimensional) fabric laminates.

Effects of Die Temperature and Moisture Content on the Quality Characteristics of Extruded Rice with Mealworm (사출구 온도와 수분함량이 갈색거저리(Mealworm) 첨가 압출성형 백미의 품질 특성에 미치는 영향)

  • Cho, Sung Young;Chatpaisarn, Apapan;Ryu, Gi Hyung
    • Food Engineering Progress
    • /
    • v.21 no.2
    • /
    • pp.116-125
    • /
    • 2017
  • This study aims to make extruded rice snack with high quality in texture and nutrition by adding mealworm. Addition of the mealworm has the merit to fill in high-quality protein and unsaturated fatty acids which are insufficient in rice. Thus, the physicochemical properties were investigated through the process of extrusion cooking. As the extrusion process varied, the die temperatures were set to $120^{\circ}C$ and $130^{\circ}C$. Also, the moisture contents were adjusted to 30% and 35%. The specific length, the expansion ratio, and the water absorption index increased as the added content of mealworm became higher. On the contrary, the density, the breaking strength, the apparent elastic modulus, and the water solubility index decreased. As mealworm and moisture content increased, DPPH radical scavenging activity significantly increased but the rancidity decreased. As a result, the addition of mealworm to the extruded rice snack was effective in improving texture, nutrition, and antioxidation.

Effect of Measuring Parameters of Tensile Strength of Fiber-reinforced Composite Materials (섬유강화 복합재료의 인장강도 측정변수에 따른 영향)

  • Lee, Jae-Dong;Jin, Young-Ho;Kim, Min-Seok;Son, Hyun-Sik;Kwon, Dong-Jun
    • Journal of Adhesion and Interface
    • /
    • v.22 no.3
    • /
    • pp.85-90
    • /
    • 2021
  • Generally, the tensile strength of carbon fiber reinforced composite (CFRP) should be determined to produce this material. The tensile strength was performed based on ASTM D3039, and this test could cause the error by specimens and human. In this research, the CFRP tensile test was performed with different thickness of specimens and tap, adhesive for attaching tap, and pressure of jig to hold the specimens, while the test was performed based on ASTM D3039. The tensile stress and modulus exhibited differently with different specimen thicknesses, and the 1~1.5 mm thickness of the specimen was optimized. In the case of 0.28 MPa jig pressure, the slip or fracture at the clamping area of the specimen has not occurred, and specimens were fractured to the center section of the specimen. The adhesive to attach jig on specimen should be used to exhibit high adhesive stress. Experimental parameters could cause errors. It is expected to achieve an accurate tensile property evaluation of composite materials via improvements in adhesives, tabs, and jigs.

Fluoro-illite/polypropylene Composite Fiber Formation and Their Thermal and Mechanical Properties (불소화 일라이트/폴리프로필렌 복합섬유 형성 및 열 및 기계적 특성)

  • Jeong, Euigyung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.467-472
    • /
    • 2011
  • This study investigated illite/polypropylene (PP) composite filament formation via melt-spinning and evaluated their physical properties to prepare functional fibers using natural materials. When composite filaments were formed, the composite filaments exhibited smaller fiber diameters compared to that of neat PP filament because of the lubricant effect of illite induced by its layered structure. Moreover, fluorination effect increased interfacial affinity and dispersion in the polymer, resulting in smaller diameter of fluorinated illite/PP composite filament, which was 2/3 of the neat PP filament diameter. Addition of raw and fluorinated illite improved thermal stability of illite/PP composite filament. Raw illite/PP composite filament cannot be used for a practical application, because it broke during drawing process, whereas the fluorinated illite/PP composite filament can be used for a practical application, because it exhibited similar tensile strength of the neat PP filament and 50% increased modulus. Even with improved illite/PP interfacial affinity and illite dispersion in the polymer, illite/PP composite filament formed microcomposite, because non-expandable illite had strongly bound layers, resulting in only a little illite exfoliation and PP intercalation into illite.

Synthesis and Characterization of 4-Component Polyimide Films with Various Diamine and Dianhydride Compositions (다양한 조성 변화에 따른 4성분계 폴리이미드 필름 제조와 물성분석)

  • Park, Yun Jun;Yu, Duk Man;Choi, Jong Ho;Ahn, Jeong-Ho;Hong, Young Taik
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.623-626
    • /
    • 2011
  • Various poly(amic acid)s were synthesized from PMDA/BPDA/p-PDA/ODA with different mole ratios and effectively converted into 4-component polyimide films by thermal imidization. The chemical structures and thermo-mechanical properties of polyimide films were examined using Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analyzer (TGA), thermo-mechanical analyzer (TMA), dynamic mechanical analyzer (DMA) and universal tensile machine (UTM). The tensile strength, modulus, and thermal properties of polyimides films increased with the amount of rigid PMDA and p-PDA, while the elongation and moisture absorption of polyimide films increased with the amount of flexible BPDA and ODA. One of 4-component polyimide films exhibited a similar coefficient of thermal expansion (CTE) value to that of copper when it was composed of PMDA : BPDA : p-PDA : ODA with the ratio of 5 : 5 : 4 : 6. Thus, this polyimide film could be useful for a base film for flexible copper clad laminates (FCCL) of flexible printed circuit boards.

Vibration and Impact Transmission for each Variable of Woodpile Metamaterial (우드파일 메타물질의 변수 별 진동 및 충격에 끼치는 영향)

  • Ha, Young sun;Hwang, Hui Y.;Cheon, Seong S.
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.155-160
    • /
    • 2021
  • Metamaterials are complexes of elements that can create properties not found in naturally occurring materials, such as changing the direction of forces, creating negative stiffness, or altering vibration and impact properties. In the case of wood pile metamaterials that are easy to manufacture and have excellent performance in reducing vibration and shock in the vertical direction, basic research on variables affecting shock transmission is needed to reduce shock. Although research on impact reduction according to geometrical factors is being conducted recently, studies on the effect of material variables on impact reduction are insufficient. In this paper, finite element analysis was carried out by variablizing the geometrical properties (lamination angle, diameter, length) and material properties (modulus of elasticity, specific gravity, Poisson's ratio) of wood pile cylinders. Through finite element analysis, the shape of the wooden pile cylinder delivering impact was confirmed, and the effect of each variable on the reduction of impact force and energy was considered through main effect diagram analysis, and frequency band analysis was performed through fast Fourier transform. proceeded In order to reduce the impact force and vibration, it was found that the variables affecting the contact area of t he cylinder have a significant effect.

Analysis of Failure Behavior of FRP Rebar Reinforced Concrete Slab based on FRP Reinforced Ratio (FRP 보강근비에 따른 FRP 보강 콘크리트 슬래브의 파괴거동 분석)

  • Jang, Nag-Seop;Kim, Young-Hwan;Oh, Hong-Seob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.173-181
    • /
    • 2021
  • Reinforced concrete structures are exposed to various environments, resulting in reinforcement corrosion due to moisture and ions penetration. Reinforced concrete corrosion causes a decrease in the durability performance of reinforced concrete structures. One solution to mitigate such issues is using FRP rebars, which offer several advantages such as high tensile strength, corrosion resistance, and light-weight than conventional rebars, in reinforced concrete instead of conventional steel rebars. The FRP rebar used should be examined at the limit state because FRP reinforced concrete has linear behavior until its fracture and can generate excessive deflection due to the low elastic modulus. It should be considered while designing FRP reinforced concrete for flexure. In the ultimate limit state, the flexural strength of FRP reinforced concrete as per ACI 440.1R is significantly lower than the flexural strength by applying both the environmental reduction and strength reduction factors accounting for the material uncertainty of FRP rebar. Therefore, in this study, the experimental results were compared with the deflection of the proposed effective moment of inertia referring to the local and international standards. The experimental results of GFRP and BFRP reinforced concrete were compared with the flexural strength as determined by ACI 440.1R and Fib bulletin 40. The flexural strength obtained by the experimental results was more similar to that obtained by Fib bulletin 40 than ACI 440.1R. The flexural strength of ACI 440.1R was conservatively evaluated in the tension-controlled section.

Prediction of Hydrodynamic Behavior of Unsaturated Ground Due to Hydrogen Gas Leakage in a Low-depth Underground Hydrogen Storage Facility (저심도 지중 수소저장시설에서의 수소가스 누출에 따른 불포화 지반의 수리-역학적 거동 예측 연구)

  • Go, Gyu-Hyun;Jeon, Jun-Seo;Kim, YoungSeok;Kim, Hee Won;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.107-118
    • /
    • 2022
  • The social need for stable hydrogen storage technologies that respond to the increasing demand for hydrogen energy is increasing. Among them, underground hydrogen storage is recognized as the most economical and reasonable storage method because of its vast hydrogen storage capacity. In Korea, low-depth hydrogen storage using artificial protective structures is being considered. Further, establishing corresponding safety standards and ground stability evaluation is becoming essential. This study evaluated the hydro-mechanical behavior of the ground during a hydrogen gas leak from a low-depth underground hydrogen storage facility through the HM coupled analysis model. The predictive reliability of the simulation model was verified through benchmark experiments. A parameter study was performed using a metamodel to analyze the sensitivity of factors affecting the surface uplift caused by the upward infiltration of high-pressure hydrogen gas. Accordingly, it was confirmed that the elastic modulus of the ground was the largest. The simulation results are considered to be valuable primary data for evaluating the complex analysis of hydrogen gas explosions as well as hydrogen gas leaks in the future.

A Methodology for Quality Control of Railroad Trackbed Fills Using Compressional Wave Velocities : II. Verification of Applicability (압축파 속도를 이용한 철도 토공노반의 품질관리 방안 : II. 적용성 검증)

  • Park, Chul-Soo;Mok, Young-Jin;Hwang, Seon-Keun;Park, In-Beom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.57-66
    • /
    • 2009
  • In the preliminary investigation (Park et al., 2009), the use of compressional wave velocity and its measurement techniques were proposed as a new quality control measure for trackbed fills. The methodology follows exactly the same procedure as the density control, except the density being replaced by the compressional wave velocity involving consistently with resilient modulus of design stage. The specifications for the control also include field compaction water content of optimum moisture content ${\pm}2%$ as well as the compressional wave velocity. In this sequel paper, crosshole and resonant column tests were performed as well direct-arrival method and laboratory compressional wave measurements to verify the practical applicability of a methodology far the new quality control procedure based upon compressional wave velocity. The stress-modified crosshole results reasonably well agree with the direct-arrival values, and the resonant column test results also agree well with the field crosshole results. The compressional wave velocity turned out to be an excellent control measure for trackbed fills both in the theoretical and practical point of view.

A Fundamental Study on Laboratory Experiments in Rock Mechanics for Characterizing K-COIN Test Site (K-COIN 시험부지 특성화를 위한 암석역학 실내실험 기초 연구)

  • Seungbeom Choi;Taehyun Kim;Saeha Kwon;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.109-125
    • /
    • 2023
  • Disposal repository for high-level radioactive waste secures its safety by means of engineered and natural barriers. The performance of these barriers should be tested and verified through various aspects in terms of short and/or long-term. KAERI has been conducting various in-situ demonstrations in KURT (KAERI Underground Research Tunnel). After completing previous experiment, a conceptual design of an improved in-situ experiment, i.e. K-COIN (KURT experiment of THMC COupled and INteraction), was established and detailed planning for the experiment is underway. Preliminary characterizations were conducted in KURT for siting a K-COIN test site. 15 boreholes with a depth of about 20 m were drilled in three research galleries in KURT and intact rock specimens were prepared for laboratory tests. Using the specimens, physical measurements, uniaxial compression, indirect tension, and triaxial compression tests were conducted. As a result, specific gravity, porosity, elastic wave velocities, uniaxial compressive strength, Young's modulus, Poisson's ratio, Brazilian tensile strength, cohesion, and internal friction angle were estimated. Statistical analyses revealed that there did not exist meaningful differences in intact rock properties according to the drilled sites and the depth. Judging from the uniaxial compressive strength, which is one of the most important properties, all the specimens were classified as very strong rock so that mechanical safety was secured in all the regions.