• Title/Summary/Keyword: You Only Look Once

Search Result 119, Processing Time 0.029 seconds

YOLO-based School Violence Detection System (YOLO 기반 학교폭력 감지 시스템)

  • Chanhwi Shin;Mikyeong Moon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.703-704
    • /
    • 2023
  • 학교폭력은 교육 환경에서 심각한 문제이다. 피해자에게 심리적 고통과 육체적 상해를 입히고 학교 내 안전과 안정성을 위협한다. 이에 많은 교육기관과 정부 기관이 학교폭력 예방과 대처를 위한 다양한 방안을 제시하고 있지만, 여전히 어려운 문제이다. 최근에는 인공지능 기술을 활용하여 학교폭력 방지와 대처에 관한 연구가 이루어지고 있다. 본 연구에서는 YOLOv5(You Only Look Once version 5) 딥러닝 알고리즘을 활용하여 학교 내부에서 발생하는 폭력 행위를 실시간으로 탐지하는 모델을 제안한다. 이 모델은 CCTV와 같은 영상 데이터를 입력으로 받아들여 학교 내부에서 발생하는 폭력 행위를 실시간으로 식별하는 것을 목표로 한다.

  • PDF

A Comparative Study on the Object Detection of Deposited Marine Debris (DMD) Using YOLOv5 and YOLOv7 Models (YOLOv5와 YOLOv7 모델을 이용한 해양침적쓰레기 객체탐지 비교평가)

  • Park, Ganghyun;Youn, Youjeong;Kang, Jonggu;Kim, Geunah;Choi, Soyeon;Jang, Seonwoong;Bak, Suho;Gong, Shinwoo;Kwak, Jiwoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1643-1652
    • /
    • 2022
  • Deposited Marine Debris(DMD) can negatively affect marine ecosystems, fishery resources, and maritime safety and is mainly detected by sonar sensors, lifting frames, and divers. Considering the limitation of cost and time, recent efforts are being made by integrating underwater images and artificial intelligence (AI). We conducted a comparative study of You Only Look Once Version 5 (YOLOv5) and You Only Look Once Version 7 (YOLOv7) models to detect DMD from underwater images for more accurate and efficient management of DMD. For the detection of the DMD objects such as glass, metal, fish traps, tires, wood, and plastic, the two models showed a performance of over 0.85 in terms of Mean Average Precision (mAP@0.5). A more objective evaluation and an improvement of the models are expected with the construction of an extensive image database.

Implementation of Prevention and Eradication System for Harmful Wild Animals Based on YOLO (YOLO에 기반한 유해 야생동물 피해방지 및 퇴치 시스템 구현)

  • Min-Uk Chae;Choong-Ho Lee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.137-142
    • /
    • 2022
  • Every year, the number of wild animals appearing in human settlements increases, resulting in increased damage to property and human life. In particular, the damage is more severe when wild animals appear on highways or farmhouses. To solve this problem, ecological pathways and guide fences are being installed on highways. In addition, in order to solve the problem in farms, horn repelling using sensors, installing a net, and repelling by smell of excrement are being used. However, these methods are expensive and their effectiveness is not high. In this paper, we used YOLO (You Only Look Once), an AI-based image analysis method, to analyze harmful animals in real time to reduce malfunctions, and high-brightness LEDs and ultrasonic frequency speakers were used as extermination devices. The speaker outputs an audible frequency that only animals can hear, increasing the efficiency to only exterminate wild animals. The proposed system is designed using a general-purpose board so that it can be installed economically, and the detection performance is higher than that of the devices using the existing sensor.

A Study on Worker Risk Reduction Methods using the Deep Learning Image Processing Technique in the Turning Process (선삭공정에서 딥러닝 영상처리 기법을 이용한 작업자 위험 감소 방안 연구)

  • Bae, Yong Hwan;Lee, Young Tae;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.1-7
    • /
    • 2021
  • The deep learning image processing technique was used to prevent accidents in lathe work caused by worker negligence. During lathe operation, when the chuck is rotated, it is very dangerous if the operator's hand is near the chuck. However, if the chuck is stopped during operation, it is not dangerous for the operator's hand to be in close proximity to the chuck for workpiece measurement, chip removal or tool change. We used YOLO (You Only Look Once), a deep learning image processing program for object detection and classification. Lathe work images such as hand, chuck rotation and chuck stop are used for learning, object detection and classification. As a result of the experiment, object detection and class classification were performed with a success probability of over 80% at a confidence score 0.5. Thus, we conclude that the artificial intelligence deep learning image processing technique can be effective in preventing incidents resulting from worker negligence in future manufacturing systems.

Automatic Notification System of Expiration Date Based on YOLO and OCR algorithm for Blind Person (시각 장애우를 위한 YOLO와 OCR 알고리즘 기반의 유통기한 자동 알림 시스템)

  • Kim, Min-Soo;Moon, Mi-kyung;Han, Chang-hee
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.697-698
    • /
    • 2021
  • 본 논문에서는 시각 장애우의 식품 안전성 증진을 위해 광학 문자 인식 (optical character recognition, OCR) 및 실시간 객체 인식 (you only look once, YOLO) 알고리즘에 기반한 식품의 유통기한 자동 알림 시스템을 제안한다. 제안하는 시스템은 1) 스마트폰 카메라를 통해 실시간으로 입력되는 영상에서 YOLO 알고리즘을 활용하여 유통기한으로 예측되는 이미지 영역을 검출하고, 2) 검출된 영역에서 OCR 알고리즘을 활용하여 유통기한 데이터를 추출하며, 3) 최종 추출된 유통기한 데이터를 음성으로 변환하여 시각 장애우에게 전달한다. 개발된 시스템은 유통기한 정보를 추출해서 사용자에게 전달하기까지 평균 약 7초 이내의 빠른 응답 속도를 보였으며, 62.8%의 객체 인식 정확도와 93.6%의 문자 인식 정확도를 보였다. 이러한 결과들은 제안하는 시스템을 시각 장애우들이 실용적으로 활용할 수 있다는 가능성을 보여준다.

  • PDF

Design and Construction of Image Dataset for Finger Direction Detection (손가락 방향 감지를 위한 이미지 데이터셋 설계 및 구축)

  • Kang, Gi Deok;Lee, Dong Myung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.31-33
    • /
    • 2021
  • In this paper, a dataset was designed and built to improve the accuracy of finger direction detection using an object detection algorithm based on You Only Look Once (YOLO). In order to improve the object detection performance, about 200 finger image data sets were trained, and to confirm that the detection accuracy differs from each other according to the angle of the palm, 50 comparison groups of different angles were configured and tested. As a result of the experiment, it was confirmed that the detection accuracy of palm located in a direction close to 90° is higher than that of other angles.

  • PDF

Design and Implementation of Finger Direction Detection Algorithm in YOLO Environment (YOLO 환경에서 손가락 방향감지 알고리즘 설계 및 구현)

  • Lee, Cheol Min;Thar, Min Htet;Lee, Dong Myung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.28-30
    • /
    • 2021
  • In this paper, an algorithm that detects the user's finger direction using the YOLO (You Only Look Once) library was proposed. The processing stage of the proposed finger direction detection algorithm consists of a learning data management stage, a data learning stage, and a finger direction detection stage. As a result of the experiment, it was found that the distance between the camera and the finger had a very large influence on the accuracy of detecting the direction of the finger. We plan to apply this function to Turtlebot3 after improving the accuracy and reliability of the proposed algorithm in the future.

  • PDF

YOLO Based Automatic Sorting System for Plastic Recycling (플라스틱 재활용을 위한 YOLO기반의 자동 분류시스템)

  • Kim, Yong jun;Cho, Taeuk;Park, Hyung-kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.382-384
    • /
    • 2021
  • In this study, we implement a system that automatically classifies types of plastics using YOLO (You Only Look Once), a real-time object recognition algorithm. The system consists of Nvidia jetson nano, a small computer for deep learning and computer vision, with model trained to recognize plastic separation emission marks using YOLO. Using a webcam, recycling marks of plastic waste were recognized as PET, HDPE, and PP, and motors were adjusted to be classified according to the type. By implementing this automatic classifier, it is convenient in that it can reduce the labor of separating and discharging plastic separation marks by humans and increase the efficiency of recycling through accurate recycling.

  • PDF

Development of Illegal Parking Detection System for Electric Vehicle Charging Station (전기차 충전소 불법주차 탐지 시스템 개발)

  • Im, Hyo-Gyeong;Lee, Sang-Min;Ju, Eun-Su;Park, Seong-Ik;Jeon, Chan-Ho;Jung, Young-Seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.315-316
    • /
    • 2022
  • 최근 전 세계적인 탄소 중립 정책으로 인해 전기차 보급 속도는 예상보다 훨씬 빠르게 증가하고 있다. 하지만 늘어나는 수요에 비해 전기차 충전기 수는 턱없이 부족하다. 그뿐만 아니라 일반 차들의 전기차 충전소 불법주차로 인해 전기차가 충전하지 못하는 불편함이 발생하고 있다. 본 논문에서는 에지 컴퓨터(edge computer)와 딥러닝 기반 객체 감지 시스템 YOLO(You only look once)를 이용한 전기차 충전소 불법주차 방지 시스템을 개발한다. 먼저, 이 시스템은 카메라를 통해 실시간으로 영상을 받아 YOLO를 이용하여 차량 번호판 인식이 되면 전기차 번호판의 특정 마크를 인식하여 전기차인지 일반 차인지를 판별하여 판별된 값에 따라 주차 차단기가 작동되는 시스템이다. 전기차이면 차단기가 내려가서 충전소를 이용할 수 있게 하고 일반차일 경우 주차 차단기가 내려가지 않고 막아 불법주차를 차단한다. 이와 같은 기술을 활용하여 전기차 충전소 불법주차 방지에 기여하고자 한다.

  • PDF

Computer Vision-Based Car Accident Detection using YOLOv8 (YOLO v8을 활용한 컴퓨터 비전 기반 교통사고 탐지)

  • Marwa Chacha Andrea;Choong Kwon Lee;Yang Sok Kim;Mi Jin Noh;Sang Il Moon;Jae Ho Shin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.29 no.1
    • /
    • pp.91-105
    • /
    • 2024
  • Car accidents occur as a result of collisions between vehicles, leading to both vehicle damage and personal and material losses. This study developed a vehicle accident detection model based on 2,550 image frames extracted from car accident videos uploaded to YouTube, captured by CCTV. To preprocess the data, bounding boxes were annotated using roboflow.com, and the dataset was augmented by flipping images at various angles. The You Only Look Once version 8 (YOLOv8) model was employed for training, achieving an average accuracy of 0.954 in accident detection. The proposed model holds practical significance by facilitating prompt alarm transmission in emergency situations. Furthermore, it contributes to the research on developing an effective and efficient mechanism for vehicle accident detection, which can be utilized on devices like smartphones. Future research aims to refine the detection capabilities by integrating additional data including sound.