• Title/Summary/Keyword: Yield loss model

Search Result 121, Processing Time 0.023 seconds

Simulation of the Reduction Effect of Soil Loss Using SWAT Model (SWAT 모형을 이용한 토양유실량 저감효과 모의)

  • Jeong, Jin-Kweon;Kim, Hwan-Gi
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.4
    • /
    • pp.243-253
    • /
    • 2008
  • The purpose of this study was to simulate the reduction effect of soil loss in the Yongdam reservoir watershed using SWAT model. To evaluate accuracy for flow and sediment yield of SWAT model, calibration was performed for the period from Jan. 2002 to Dec. 2003, and the verification for Jan. 2005 to Dec. 2005. The calibration and the verification were carried out using data observed at the Cheoncheon gaging station. The $R^2$ and EI values in terms of a flow were 0.8 and 0.78 respectively for calibration, whereas they for verification were 0.88 and 0.86 respectively. In terms of a sediment yield, they were 0.7 and 0.48 respectively for calibration, whereas for verification were 0.64 and 0.54 respectively. As a results from model simulation, annual mean soil loss rates in terms of forest, paddy and upland were 0.02 ton/ha/yr, 0.15 ton/ha/yr and 7.58 ton/ha/yr, respectively. The results show that the land use type of a upland has more significant impact on a total soil loss as well as a sediment yield than other types of land use. The sediment delivery ratio was determined to be about 0.35. In this study 2 land cover change scenarios for upland area were considered. These scenarios were used an input to SWAT model in order to evaluate their impact on soil loss and sediment delivery. The results show that a reduction of the upland area would reduce the soil loss and sediment yield.

Monthly Sediment Yield Estimation Based on Watershed-scale Application of ArcSATEEC with Correction Factor (보정계수 적용을 통한 유역에 대한 ArcSATEEC의 월별 토양유실량 추정 방안 연구)

  • Kim, Eun Seok;Lee, Hanyong;Yang, Jae E;Lim, Kyoung Jae;Park, Youn Shik
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.3
    • /
    • pp.52-64
    • /
    • 2020
  • The universal soil loss equation (USLE), a model for estimating the potential soil loss, has been used not only in research areas but also in establishing national policies in South Korea. Despite its wide applicability, USLE cannot adequately address the effect of seasonal variances. To overcome this limit, the ArcGIS-based Sediment Assessment Tool for Effective Erosion (ArcSATEEC) has been developed as an alternative model. Although the field-scale (< 100 ㎡) application of this model produced reliable estimation results, it is still challenging to validate accuracy of the model estimation because it only estimates potential soil losses, not the actual sediment yield. Therefore, in this study, a method for estimating actual soil loss based on the ArcSATEEC model was suggested. The model was applied to eight watersheds in South Korea to estimate sediment yields. Correction factor was introduced for each watershed, and the estimated sediment yield was compared with that of the estimated yield by LOAD ESTimator (LOADEST). Sediment yield estimation for all watersheds exhibited reliable results, and the validity of the proposed correction factor was confirmed, suggesting the correction factor needs to be considered in estimating actual soil loss.

Estimating Soil Loss in Alpine Farmland with RUSLE and SEDD (RUSLE와 SEDD를 이용한 고랭지 경작지로부터의 토양유실 평가)

  • Cho Hong-Lae;Jeoung Jong-Chul
    • Spatial Information Research
    • /
    • v.13 no.1 s.32
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is to estimate quantitatively soil loss and sediment yield in alpine farmland. For this purpose, Naerinchon watershed in Gangwon province was selected as our study area and total annual soil loss and sediment yield was estimated respectively by the Revised Universal Soil Loss Equation (RUSLE) model and the Sediment Delivery Distributed (SEDD) model. The results of this study clearly show that dry field areas have significant impact on the total soil erosion and sediment yield compared with other land use. Dry field areas represent only $2.6\%$ of the total area of the watershed but soil loss and sediment yield account for $10.9\%$ and $33.12\%$ of the total amount respectively Especially as with alpine farmland, this result is more clearly shown. These areas account for $1.8\%$ of the entire watershed but contribute to $7.7\%$ and $15\%$ of the total soil loss and sediment yield respectively. From the above results, we can know that alpine farmland is important source of soil loss and sediment yield and it is need to prevent and control. soil erosion from alpine filmland urgently.

  • PDF

Study on Quantifying Erosion Control Function of Forest (산림의 토사유출 방지기능에 관한 연구)

  • Youn, Ho-Joong;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.10 no.1
    • /
    • pp.36-43
    • /
    • 2007
  • This study was carried out to know how erosion control function of forests varies as forests develop in watersheds. The erosion control function among the forest welfare functions can be estimated by comparing sediment yield in stocked with non-stocked area. Sediment yield of reservoirs in stocked area were collected from farmland improvement associations. The sediment yields in non-stocked area were using USLE (Universal Soil Loss Equation) in the same reservoirs. Forests' erosion control function estimated by differences of the sediment yield between stocked and non-stocked area was static model because of no consideration on forest aging. Dynamic model was developed to consider a forest stand age. The model comprises the relationship between average forest age in watershed and sediment yield. The amount of sediment yield was different depending mother rocks. It decreased exponentially according to the forest's grow up. In case of igneous rock, the volume of sediment yield $Y_{ig}=1.4431e\;^{0.023x}$(x=average forest age), metamorphic rock $Y_{me}=4.7115e\;^{0.0694x}$, and sedimentary rock $Y_{se}=1.2808e\;^{0.028x}$.

Loss Calculation Method of Grid-Connected Photovoltaic System (계통연계형 태양광발전시스템의 손실 산출방법)

  • So, Jung-Hun;Lim, Hyun-Mook;Wang, Hye-Mi;Jung, Young-Seok;Ko, Suk-Whan;Ju, Young-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.18-23
    • /
    • 2013
  • This paper presents a simple but valid loss calculation method of grid-connected photovoltaic system based on normalized yield model. The proposed method can be represented as a quantitative value for five losses and performance of grid-connected photovoltaic system with three years monitored data. These results will indicate that it is useful to investigate various loss factors causing the performance obstruction, enhance the lifetime yield for changing meteorological conditions, and determine the optimal design and performance improvement of grid-connected photovoltaic system.

Establishment of Economic Threshold by Evaluation of Yield Component and Yield Damages Caused by Leaf Spot Disease of Soybean (콩 점무늬병(Cercospora sojina Hara) 피해해석에 의한 경제적 방제수준 설정)

  • Shim, Hongsik;Lee, Jong-Hyeong;Lee, Yong-Hwan;Myung, Inn-Shik;Choi, Hyo-Won
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.196-200
    • /
    • 2013
  • This study was carried out to investigate yield loss due to soybean leaf spot disease caused by Cercospora sojina Hara and to determine the economic threshold level. The investigations revealed highly significant correlations between disease severity (diseased leaf area) and yield components (pod number per plant, total grain number per plant, total grain weight per plant, percent of ripened grain, weight of hundred seed, and yield). The correlation coefficients between leaf spot severity and each component were -0.90, -0.90, -0.92, -0.99, -0.90 and -0.94, respectively. The yield was inversely proportional to the diseased leaf area increased. The regression equation, yield prediction model, between disease severity (x) and yield (y) was obtained as y = -3.7213x + 354.99 ($R^2$ = 0.9047). Based on the yield prediction model, economic injury level and economic threshold level could be set as 3.3% and 2.6% of diseased leaf area of soybean.

Estimating and Analysis of Soil Loss from Upland Watershed Using WEPP Model (WEPP 모형을 이용한 밭유역의 토양 유실량 추정 및 분석)

  • Kang, Min-Goo;Park, Seung-Woo;Son, Jung-Ho;Kang, Moon-Sung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.85-88
    • /
    • 2002
  • This paper presents the result of the Water Erosion Prediction Project(WEPP) watershed scale model's application for prediction of sediment yield from a watershed which is comprised of hillslopes and channels and analyses of the soil loss from hillslopes and channels with crop practice and shape. To evaluate the model's application, the model is applied to a watershed that comprised of six hillslope and one channel, and the result was a good agreement with the observed values. The soil loss from hillslope was increased as the hills lope was under fallow conditions and slope length was longer. The soil loss from the channel was increased at the downstream for the concentration of flow.

  • PDF

Assessment of Ecosystem services under changing climate in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon-Jeong;Lee, Sanghyup;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.148-148
    • /
    • 2019
  • The 2006 Millennium Ecosystem Assessment (MA) defines ecosystem services (ES) as "the benefits people obtain from ecosystems". Identifying where ES originates, whom it benefits and how it is changing over a period of time is critical in rapidly developing country like Nepal, where the risk of ES loss is high. In the context of various ecosystem services provided by watershed, this study, particularly deals with water yield, Soil loss and Carbon sequestration computation and evaluation in Bagmati Basin of Nepal. As Bagmati Basin incorporates capital city Kathmandu of nepal, land use change is significant over decades and mapping of ES is crucial for sustainable development of Basin in future. In this regard, the objectives of this study are 1) To compute the total and sub-watershed scale water yield of the basin, 2) Computation of soil loss and sediment retention in the basin, and 3) Computation of carbon sequestration in the basin. Integrated Valuation of Environmental Services and Tradeoffs (InVEST), a popular model for ecosystem service assessment based on Budyko hydrological method is used to compute Ecosystem services. The scenario of ES in two periods of time can be referenced for various approaches of prioritization and incorporation of their value into local and regional decision making for management of basin.

  • PDF

Burn-in Considering a Trade-Off of Yield and Reliability (수율과 신뢰도의 상충효과를 고려한 번인)

  • Kim, Kyung-Mee
    • IE interfaces
    • /
    • v.20 no.1
    • /
    • pp.87-93
    • /
    • 2007
  • Burn-in is an engineering method for screening out products containing reliability defects which would cause early failures in field operation. Previously, various burn-in models have been proposed mainly focused on the trade-off of shop repair cost and warranty cost ignoring manufacturing yield. From the view point of a manufacturer, however, burn-in decreases warranty cost at the expense of yield reduction. In this paper, we provide a general model quantifying a trade-off between product yield and reliability, in which any defect distribution from previous yield models can be used. A profit function is expressed in burn-in environments for determining an optimal burn-in time. Finally, the method is illustrated with gate oxide failures which is an important reliability concerns for VLSI CMOS circuits.

Development of a Rapeseed Reaping Equipment Attachable to a Conventional Combine (Ill) - Analysis of Principal Factor for Loss Reduction of Rapeseed Mechanical Harvesting - (보통형 콤바인 부착용 유채 예취장치 개발 (III) - 유채 기계 수확 손실 절감을 위한 요인 구명 -)

  • Lee, C.K.;Choi, Y.;Jun, H.J.;Lee, S.K.;Moon, S.D.;Kim, S.S.
    • Journal of Biosystems Engineering
    • /
    • v.34 no.2
    • /
    • pp.114-119
    • /
    • 2009
  • Field test was conducted to investigate primary factors reducing rapeseed harvesting using a reciprocating cutter-bar of combine. The results showed that the correlation between crop moisture content and yield loss had a U-type, which indicated that the yield reduction increased at too high and too low crop moisture contents. The proper ranges of crop moisture contents were 27${\sim}$35%, 21${\sim}$56%, and 62${\sim}$73% in case of grain, pod and stem, respectively. Crop moisture content was negatively correlated with header loss, but positively correlated with threshing loss. In contrary, stem moisture content showed positive correlations with total loss, threshing loss and separation loss. Working speed was positively correlated with header loss. Total flow rate, pod flow rate and stem flow rate were highly correlated with threshing loss and separation loss. However, grain flow rate did not show any correlation with total loss. According to the principal component analysis, two principal components were derived as components with eigenvalues greater than 1.0. The contribution rates of the first and the second components were 52.7% and 38.9%, which accounted for 91.6% of total variance. As a contributive factor influencing total loss of rapeseed mechanical harvesting, a crop moisture content factor was greater than a crop flow rate factor. The stepwise multiple regression analysis for total loss was conducted using crop moisture content factor, crop flow rate factor and coefficient. However, the model did not show any correlation among independent and dependent factors ($R^2$=0.060).