• Title/Summary/Keyword: Yield Shear Force

Search Result 162, Processing Time 0.023 seconds

Mechanization of Pine Cone Harvest(II) -Shearing Characteristics of Shoots of Korean Pine Trees- (잣 수확의 기계화 연구(II) -잣나무 가지의 전단 특성-)

  • Kang, W.S.;Kim, S.H.;Lee, J.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-21
    • /
    • 1994
  • This reasearch was performed to provide the fundamental intonation for the mechanization of Korean pine cone harvest when the shoot shearing method is adopted. Shear force and stress of pine cone shoots were measured and analyzed for this purpose. Samples are selected along their harvesting time and tested in 17 levels of shoot diameter from 10 to 26mm with 1mm increment. 1) Shear force-deformation characteristics showed that shoot reached its rupture point after 2 to 4 of bio-yield points. It was supposed that these multiple bio-yield points were caused by the discrete compression of wood parts which are composed of water, nutrient, resin, etc. 2) Required shear force to shear shoot was proportional to the square of shoot diamter, however, shear force for shoots of early harvesting time(Aug. 31) was proportional to the shoot diameter. Variance of shear force was increased as the harvesting time was delayed. Shear forces were distributed from 468N(Aug. 31, 12mm dia) to 4153N(Aug. 31, 26mm dia) disregarding the sampling date. 3) The average shear stresses by sampling dates were 744,822, and 883N/m2, respectively, and for the earlier shoot samples shear stress was quite smaller than the others. Shear stress was proportional to shoot diameter squared, and the effect of shoot diameter on the shear stress was decreased as harvesting time was delayed.

  • PDF

The Behavior of RC Columns on the Variation of Performance Influencing Factor (성능영향인자 변화에 따른 철근 콘크리트 기둥의 거동)

  • Yun, Sung-Hwan;Choi, Min-Choul;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.281-284
    • /
    • 2008
  • Performance evaluation exposing the performance of structure is affected by the material and structural characteristics. these should be necessary for the analysis about the effect of structure performance. Thus, to evaluate the structural performance affected the material properties and structural characteristics, firstly it is conducted the eigenvalues analysis and non-linear static analysis of the structure, secondly it is analyzed the performance influence factor of the structure. The performance influence factors affecting the performance of structure divided into five classes(strength of concrete, longitudinal and transverse reinforcement, aspect ratio, axial force). From the result of analysis about the change of performance influence factor, the more the strength of concrete is increasing, the more the maximum shear force is increasing and the yield displacement is not changed, the more longitudinal reinforce is increasing, the more yield displacement and the maximum basis shear force is increasing, the more the transverse reinforce is increasing, the change of maximum basis shear force is trivial. The yield displacement of structure is increasing and the maximum basis shear force is decreasing by increasing the aspect ratio, the more the axial force increases, the more yield displacement and maximum basis shear force decease.

  • PDF

Correlation between Shear Force and Grade Decision Factors on Hanwoo Cow Carcass (소 도체등급 판정 항목과 전단력과의 상관관계)

  • Kim, Dong-Yeop;Kim, Byoeng-Do;Baek, Sang-Guk;Jeong, Hyeong-Jin;Kim, Dae-Gon;Han, Gi-Dong
    • Food Science of Animal Resources
    • /
    • v.28 no.3
    • /
    • pp.344-348
    • /
    • 2008
  • This study was carried out to evaluate the correlation between shear force determined by tenderness analyzer and grade decision factors consisting of yield grade (carcass weight, ribeye area, backfat thickness) and quality grade (meat color, fat color, marbling, maturity, texture) in a total of 200 Hanwoo cows. Results showed that there was a negative correlation between shear force and yield grade (r=-0.186, p<0.01), i.e., when the grade of carcass yield increased (A score), the shear force value decreased. Shear force scores showed a significant correlation with marbling scores (r=-0.19, p<0.01), but no correlation with scores of meat color, fat color and texture. The maturity of Hanwoo cows is known to be one of the major factors for evaluating the grade, and the maturity showed no significant correlation with shear force value (r=-0.05, p>0.05). It is possible to get useful information for evaluating the grade of Hanwoo cows if further studies addressing the correlation of water holding capacity, juiciness, taste and overall acceptability with maturity are carried out.

Distribution of Optimum Yield-Strength and Plastic Strain Energy Prediction of Hysteretic Dampers in Coupled Shear Wall Buildings

  • Bagheri, Bahador;Oh, Sang-Hoon;Shin, Seung-Hoon
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1107-1124
    • /
    • 2018
  • The structural behavior of reinforced concrete coupled shear wall structures is greatly influenced by the behavior of their coupling beams. This paper presents a process of the seismic analysis of reinforced concrete coupled shear wall-frame system linked by hysteretic dampers at each floor. The hysteretic dampers are located at the middle portion of the linked beams which most of the inelastic damage would be concentrated. This study concerned particularly with wall-frame structures that do not twist. The proposed method, which is based on the energy equilibrium method, offers an important design method by the result of increasing energy dissipation capacity and reducing damage to the wall's base. The optimum distribution of yield shear force coefficients is to evenly distribute the damage at dampers over the structural height based on the cumulative plastic deformation ratio of the dissipation device. Nonlinear dynamic analysis indicates that, with a proper set of damping parameters, the wall's dynamic responses can be well controlled. Finally, based on the total plastic strain energy and its trend through the height of the buildings, a prediction equation is suggested.

New Deformation Mechanism in the Forming of Cones by Shear Spinning (전단 스피닝에 의한 원추형상의 성형에 관한 변형 메커니즘)

  • Kim J. H.;Kim Chul
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.375-383
    • /
    • 2005
  • The shear spinning process, where the plastic deformation zone is localized in a very small portion of the workpiece, shows a promise for increasingly broader application to the production of axially symmetric parts. In this paper, the three components of the working force are calculated by a newly proposed deformation model in which the spinning process is understood as shearing deformation after uniaxial yielding by bending, and shear stress, $\tau_{rz}$, becomes k, yield limit in pure shear, in the deformation zone. The tangential force are first calculated and the feed force and the normal force are obtained by the assumption of uniform distribution of roller pressure on the contact surface. The optimum contact area is obtained by minimizing the bending energy required to get the assumed deformation of the blank. The calculated forces are compared with experimental results. A comparison shows that theoretical prediction is reasonably in good agreement with experimental results

Prediction of Inelastic Force-Displacement Relationships of Reinforced Concrete Shear Wall Systems Based on Prescribed Ductilities (강성저하 실험식 및 연성계수를 이용한 철근콘크리트 전단벽 구조시스템의 비탄성 하중-변위 관계식 예측)

  • 홍원기
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.159-171
    • /
    • 1995
  • The parameters describing a complete hysteresis loop include pinch force, drift offset, effective stiffness, unloading and reloading trangential stiffness. Analytical equations proposed to quantify the nonlinear, inelastic behavior of reinforced shear walls can be used to predict these parameters as a function of axial load and drift ratio. For example, drift offset, effective stiffness, and first and second unloading and reloading tangential stiffness are calculated using equations obtained from test data for a desired drift ratio or ductility level. Pinch force can also be estimated for a given drift ratio and axial load. The effective virgin stiffness at the first yield and its post yield reduction can be estimated. The load deflection response of flexural reinforced concrete shear walls can now be estimated based on the effective wall stiffness that is a function of axial force and drift ratio.

  • PDF

Quasi-Steady Damping Force of Electro- and magneto-Rheo logical Flow Mode Dampers using Herschel-Bulkley Model (Herschel-Bulkley 모델에 의한 전기 및 자기장 유체 댐퍼의 준안정 상태 댐핑력 해석)

  • Lee, Dug-Young;Hwang, Woo-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1298-1302
    • /
    • 2000
  • Electrorheological(HER) and magnetorheologica(MR) fluids have a unique ability to increase the dynamic yield stress of the fluid substantially when electric or magnetic field is applied. ER and MR fluid-based dampers are typically analyzed using Bingham-plastic shear flow analysis under Quasi-steady fully developed flow conditions. An alternative perspective, supported by measurements reported in the literature, is to allow for post-yield shear thinning and shear thickening. To model these, the constant post-yield plastic viscosity in Bingham model can be replaced with a power-law model dependent on shear strain rate that is known as the Herschel-Bulkley fluid model. The objective of this paper is to predict the damping forces analytically in a typical ER bypass damper for variable electric field, or yield stress using Herschel-Bulkley analysis.

  • PDF

An Experimental and Analytical Study on Shear Transfer for Safety Evaluation of Concrete Structure (콘크리트 구조물의 전단 안정성 평가를 위한 전단전달 실험 및 해석)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.42-50
    • /
    • 2008
  • This study, push-off tests for the initially uncracked specimens were conducted to investigate shear transfer mechanism in reinforce concrete elements. Experimental programs for shear transfer were undertaken to investigate the effect of the concrete compressive strength, the presence of steel stirrups as shear reinforcement and the amount of steel stirrups. As the shear plane is loaded, several cracks form in a direction inclined to the shear plane, creating compression struts in the concrete. For this stage, shear is being transferred through a truss-like action produced by the combination of the compressive force in the concrete struts and the tensile force that the steel reinforcement crossing the shear plane develops. In the normal strength concrete specimens with steel stirrups, ultimate failure occurred when the compression struts crushed in concrete. In the high strength concrete specimens, on the other hand, ultimate failure occurred when the steel stirrups developed their yield strength.

Deformation-based Strut-and-Tie Model for reinforced concrete columns subject to lateral loading

  • Hong, Sung-Gul;Lee, Soo-Gon;Hong, Seongwon;Kang, Thomas H.K.
    • Computers and Concrete
    • /
    • v.17 no.2
    • /
    • pp.157-172
    • /
    • 2016
  • This paper presents a Strut-and-Tie Model for reinforced concrete (RC) columns subject to lateral loading. The proposed model is based on the loading path for the post-yield state, and the geometries of struts and tie are determined by the stress field of post-yield state. The analysis procedure of the Strut-and-Tie Model is that 1) the shear force and displacement at the initial yield state are calculated and 2) the relationship between the additional shear force and the deformation is determined by modifying the geometry of the longitudinal strut until the ultimate limit state. To validate the developed model, the ultimate strength and associated deformation obtained by experimental results are compared with the values predicted by the model. Good agreements between the proposed model and the experimental data are observed.

Useful Guide to Solve Herschel-Bulkley Model in a Flow Mode Damper (유동 모드 댐퍼에서의 Herschel-Bulkley 모델의 유용한 해법)

  • 이덕영;박성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.784-787
    • /
    • 2003
  • Electrorheological(ER) and magnetorheological(MR) fluid-based dampers are typically analyzed using Bingham-plastic shear model under quasi-steady fully developed flow conditions. A Herschel-Bulkley constitutive shear flow relationship is that the linear shear stress vs. strain rate behavior of Bingham model is replaced by a shear stress that is assumed to be proportional to a power law of shear rate. This power is called the flow behavior index. Depending on the value of the flow behavior index number, varying degrees of post-yield shear thickening or thinning behavior can be analyzed. But it is not practical to analyze the damping force in a flow mode damper using Herschel-Bulkley model because it is needed to solve a polynomial equation. A useful guide is suggested to analyze the damping force in a damper using the Herschel-Bulkley model.

  • PDF