• Title/Summary/Keyword: Yeast transcription

Search Result 132, Processing Time 0.022 seconds

Endocrine Disrupting Activity of Seven Phthalate Analogues in vitro

  • Ryu, Jae-Chun;Kim, Hyung-Tae;Kim, Youn-Jung;Jeon, Hee-Kyung
    • Environmental Mutagens and Carcinogens
    • /
    • v.22 no.4
    • /
    • pp.259-265
    • /
    • 2002
  • Phthalate analogues are a plasticizer and solvent used in industry. Phthalates were reported to be a potential carcinogen classified in the category of suspected endocrine disruptors. Most common human exposure to these compounds may occur with contaminated food. They may migrate into food from plastic wrap or may enter food from general environmental contamination. Since these substances are not limited to the original products, and enter the environment, they have become widespread environmental pollutants, thus leading to a variety of phthalates that possibly threaten the public health. Concern about their use has been mounting. To screen and elucidate the endocrine disrupting activity and their mechanism of phthalate analogues, first of all, E-screen assay was performed in MCF7 human breast cancer cells with seven phthalate analogues. In this cell proliferation assay, only dibutyl phthalate (DBP) showed weak estrogenic activity. Also the yeast-based transcription assay to assess the interactions of DBP with the estrogen, androgen, and progesterone receptors was conducted. DBP in the concentration ranges from 10$^{-16}$ to 10$^{-11}$ M was active in the estrogen transcriptional assay, but it did not show the effect on $\beta$-galactosidase activity in the progesterone and androgen transcriptional assays. These data indicate that DBP shows estrogenic potential and can be classified as weak and/or suspected endocrine disrupting chemicals.

  • PDF

Roles of Zinc-responsive Transcription Factor Csr1 in Filamentous Growth of the Pathogenic Yeast Candida albicans

  • Kim, Min-Jeong;Kil, Min-Kwang;Jung, Jong-Hwan;Kim, Jin-Mi
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.242-247
    • /
    • 2008
  • In the fungal pathogen Candida albicans, the yeast-to-hyphal transition occurs in response to a broad range of environmental stimuli and is considered to be a major virulence factor. To address whether the zinc homeostasis affects the growth or pathogenicity of C. albicans, we functionally characterized the zinc-finger protein Csr1 during filamentation. The deduced amino acid sequence of Csr1 showed a 49% similarity to the zinc-specific transcription factor, Zap1 of Saccharomyces cerevisiae. Sequential disruptions of CSR1 were carried out in diploid C. albicans. The csr1/csr1 mutant strain showed severe growth defects under zinc-limited growth conditions and the filamentation defect under hypha-inducing media. The colony morphology and the germ-tube formation were significantly affected by the csr1 mutation. The expression of the hyphae-specific gene HWP1 was also impaired in csr1/csr1 cells. The C. albicans homologs of ZRTl and ZRT2, which are zinc-transporter genes in S. cerevisiae, were isolated. High-copy number plasmids of these genes suppressed the filamentation defect of the csr1/csr1 mutant strain. We propose that the filamentation phenotype of C. albicans is closely associated with the zinc homeostasis in the cells and that Csr1 plays a critical role in this regulation.

Cultural Characteristics of a Recombinant Saccharomyces cerevisiae for the Improved Production of a Antibacterial Peptide Defensin of Fleshfly (쉬파리 유래 항균텝티드 Defensin의 생산 증진을 위한 재조합 Saccharomyces cerevisiae의 배양학적 특성)

  • 안종석;강대욱;이준원;김민수;김보연;오원근;민태익
    • Korean Journal of Microbiology
    • /
    • v.36 no.3
    • /
    • pp.236-241
    • /
    • 2000
  • A defensin is an inducible antibacterial peptide from a fleshfly and contains 40 residues basic peptide with six cysteines. For the consiruction of recombinant S cerevisiae expressing defensin, the structural gene coding for active defensin was chemically synthesized and fused in fiam to GAP promoter, MFul preprosequence and the GAL7 transcription terminator, generating a recombinant plasnlid pGMD18. S. ce~evisine 2805 Gells were transror~ned to uracil prototroph by the pGMDl8 arid the transformed cells showing antibacterial activity against 111. luteus TAM1056 were selected by growth inhibition zone assay. The optimal culture conditions for the unprovement of the defensin production of a selected tmdonnant were investigated. The optirmzed medium containing 0.4% yeast extract, 2% corn steep liquor, 2.5% glucose and 0.05% $C_2CO_3$, could be determined and the optimum lemperature. and initial pH could be detennnied as $28^{\circ}C$ and pH 3, ~mpectively. The optimized conditioiis revealed the trvofold Increase in the cell growth and the fourfold in the antibaclerial activity. coinpar-ed with tllc Yl'D medium.

  • PDF

LAMMER Kinase Modulates Cell Cycle by Phosphorylating the MBF Repressor, Yox1, in Schizosaccharomyces pombe

  • Kibum Park;Joo-Yeon Lim;Je-Hoon Kim;Jieun Lee;Songju Shin;Hee-Moon Park
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.372-378
    • /
    • 2023
  • Lkh1, a LAMMER kinase homolog in the fission yeast Schizosaccharomyces pombe, acts as a negative regulator of filamentous growth and flocculation. It is also involved in the response to oxidative stress. The lkh1-deletion mutant displays slower cell growth, shorter cell size, and abnormal DNA content compared to the wild type. These phenotypes suggest that Lkh1 controls cell size and cell cycle progression. When we performed microarray analysis using the lkh1-deletion mutant, we found that only four of the up-regulated genes in the lkh1-deletion were associated with the cell cycle. Interestingly, all of these genes are regulated by the Mlu1 cell cycle box binding factor (MBF), which is a transcription complex responsible for regulating the expression of cell cycle genes during the G1/S phase. Transcription analyses of the MBF-dependent cell-cycle genes, including negative feedback regulators, confirmed the up-regulation of these genes by the deletion of lkh1. Pull-down assay confirmed the interaction between Lkh1 and Yox1, which is a negative feedback regulator of MBF. This result supports the involvement of LAMMER kinase in cell cycle regulation by modulating MBF activity. In vitro kinase assay and NetPhosK 2.0 analysis with the Yox1T40,41A mutant allele revealed that T40 and T41 residues are the phosphorylation sites mediated by Lkh1. These sites affect the G1/S cell cycle progression of fission yeast by modulating the activity of the MBF complex.

Effect of ginseng saponins on the induction of $\beta$-galactosidase in yeast

  • Lee, Hee-Bong;Kim, Kyung-Hoon;Han, Byoung-Dong
    • Journal of Ginseng Research
    • /
    • v.22 no.4
    • /
    • pp.310-315
    • /
    • 1998
  • The effect of red ginseng saponins (total saponins, Rbl- and Rgl- fraction of saponins) on the induction of $\beta$-galactosidase in yeast, hccharomyces cereuisiae, was investigated to see that ginseng saponins would penetrate the cell membrane and have a function in a nucleus as steroid hormones do. To attain such a kind of purpose, a DNA fragment (685bp) containing GALI promoter was inserted into the sites of EcoRl and BamHl of polylinker region, upstream of lace gene of the plasmid YEp356 (7.966 Kb), and thus the resulting plasmid pGALl-lacZ is supposed to express $\beta$- galactosidase only in the presence of galactose. The plasmid pGALl -lacZ was introduced into yeast, Ky106 (a leu2 ura3 his3 trp 1 Iys2), and the growth of the transformed cells was much slower in the presence of galactose than glucose. The effects of saponins on the specific activity of P-galactosidase from transformed yeast cells were detected. No significant increase was observed in case of total saponins, but the Rbl- or Rgl- fraction of saponins gave much higher increase in the activity. Maximum increase was observed as 35% in 10-3% of Rbl and as 75% in 10-1% of Rgl. These data suggest that ginseng saponins might be able to enter the nucleus and stimulate transcription. However, further studies to find out the putative saponin receptor are needed to confirm this possibility. Key words : Red ginseng saponin, $\beta$-galactosidase induction, Saccharomyces cerevisiae.

  • PDF

Effects of Tho2, a component of THO complex, on growth and mRNA export in fission yeast (분열효모에서 THO 복합체의 구성요소인 Tho2가 생장 및 mRNA export에 미치는 영향)

  • Koh, Eun-Jin;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.181-185
    • /
    • 2015
  • Tho2/THOC2 is a subunit of the THO complex that plays important roles in mRNP biogenesis connecting transcription with mRNA maturation and export. A fission yeast, Schizosaccharomyces pombe, ortholog of Tho2/THOC2 was identified from the genome database. Tetrad analysis showed that the S. pombe tho2 is essential for growth. Repression or overexpression of the tho2 gene caused growth defect with elongated cells, abnormal DNA distribution, and accumulation of $poly(A)^+$ RNA in the nucleus. And the functional GFP-Tho2 protein is localized mainly in the nucleus. Yeast two-hybrid analysis showed that Tho2 interacted with Tex1, another subunit of THO complex. These results suggest that S. pombe Tho2 is also involved in mRNA export from the nucleus and is a component of THO complex.

Class A and class B MADS box genes fro rice flower development

  • An, Gyn-Heung;Moo,Yong-Hwan;Jeon, Jong-Seong;Kang, Hong-Gyu;Sung, Soon-Kee
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.21-35
    • /
    • 1999
  • We have previously isolated OsMADS4 gene that is a member of the class B MADS box genes from rice. In this study, another member of the class B MADS box genes was isolated from rice flower by the yeast two-hybrid screening method using OsMADS4 as bait. RNA blot analyses revealed that the clone, OsMADS16, was expressed in the second and third whorls, whereas the OsMADS4 transcripts were present in the second, third, and fourth whorls. These expression patterns of the OsMADS16 and OsMADS4 genes are very similar with those of AP3 and PI, the class B genes of Arabidopsis, respectively. In the yeast two-hybrid system, OsMADS4 interacted only with OsMADS16 among several rice MADS genes investigated, suggesting that OsMADS4 and OsMADS16 function as a heterodimer in specifying sepal and petal identities. We have also isolated OsMADS6 gene using OsMADS1 as a probe. Both are members of the AGL2 MADS family. Various MADS genes that encode for protein-protein interaction partners of the OsMADS6 protein were isolated by the yeast two-hybrid screening method. A majority of these genes belong to the AGL2 family. Sequence Homology, expression pattern, and ectopic expression phenotypes indicated that one of the interaction partners, OsMADS14, appears to be homologous to API, the class A MADS gene of Arabidopsis.

  • PDF

Effects of SPAC1B3.08, ortholog of Thp1/PCID2, on mRNA export in fission yeast (분열효모에서 Thp1/PCID2의 이종상동체인 SPAC1B3.08이 mRNA 방출에 미치는 영향)

  • Park, Jin Hee;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.55 no.2
    • /
    • pp.112-116
    • /
    • 2019
  • Thp1/PCID2 is a subunit of the evolutionally conserved TREX-2 complex, which is required for transcription-coupled mRNA export from the nucleus to the cytoplasm. In fission yeast, Schizosaccharomyces pombe, there are two orthologs of the Thp1/PCID2 protein. In addition to pci2 (SPBC1105.07c) gene, SPAC1B3.08 gene encodes a PCI domain-containing protein that is predicted as a component of TREX-2 complex. Overexpression of SPAC1B3.08 cause slight defects of both growth and mRNA export. Yeast two-hybrid and co-immunoprecipitation analysis exhibits that the SPAC1B3.08 protein interacted with Sac3 and Dss1, which are another components of TREX-2 complex. These observations support the possibility that the S. pombe SPAC1B3.08 protein, as a component of TREX-2 complex, is involved in mRNA export.

Cucumber Mosaic Virus 1a Protein Interacts with the Tobacco SHE1 Transcription Factor and Partitions between the Nucleus and the Tonoplast Membrane

  • Yoon, Ju-Yeon;Palukaitis, Peter
    • The Plant Pathology Journal
    • /
    • v.37 no.2
    • /
    • pp.182-193
    • /
    • 2021
  • The transcription factor SHE1 was identified as an interacting partner with the cucumber mosaic virus (CMV) 1a protein in the yeast two-hybrid system, by a pull-down assay, and via bimolecular fluorescent complementation. Using fluorescent-tagged proteins and confocal microscopy, the CMV 1a protein itself was found distributed predominantly between the nucleus and the tonoplast membrane, although it was also found in speckles in the cytoplasm. The SHE1 protein was localized in the nucleus, but in the presence of the CMV 1a protein was partitioned between the nucleus and the tonoplast membrane. SHE1 expression was induced by infection of tobacco with four tested viruses: CMV, tobacco mosaic virus, potato virus X and potato virus Y. Transgenic tobacco expressing the CMV 1a protein showed constitutive expression of SHE1, indicating that the CMV 1a protein may be responsible for its induction. However, previously, such plants also were shown to have less resistance to local and systemic movement of tobacco mosaic virus (TMV) expressing the green fluorescent protein, suggesting that the CMV 1a protein may act to prevent the function of the SHE1 protein. SHE1 is a member of the AP2/ERF class of transcription factors and is conserved in sequence in several Nicotiana species, although two clades of SHE1 could be discerned, including both different Nicotiana species and cultivars of tobacco, varying by the presence of particular insertions or deletions.

Construction of hsf1 Knockout-mutant of a Thermotolerant Yeast Strain Saccharomyces cerevisiae KNU5377 (고온내성 연료용 알코올 효모균주 Saccharomyces cerevisiae KNU5377에서 HSF1 유전자의 변이주 구축)

  • Kim Il-Sup;Yun Hae-Sun;Choi Hye-Jin;Sohn Ho-Yong;Yu Choon-Bal;Kim Jong-Guk;Jin Ing-Nyol
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.454-458
    • /
    • 2006
  • HSF1 is the heat shock transcription factor in Saccharomyces cerevisiae. S. cerevisiae KNU5377 can ferment at high temperature such as $40^{\b{o}}C$. We have been the subjects of intense study because Hsf1p mediates gene expression not only to heat shock, but to a variety of cellular and environmental stress challenges. Basing these facts, we firstly tried to construct the hsf1 gene-deleted mutant. PCR-method for fast production of gene disruption cassette was introduced in a thermotolerant yeast S. cerevisiae KNU5377, which allowed the addition of short flanking homology region as short as 45 bp suffice to mediate homologous recombination to kanMX module. Such a cassette is composed of linking genomic DNA of target gene to the selectable marker kanMX4 that confers geneticin (G418) resistance in yeast. That module is extensively used for PCR-based gene replacement of target gene in the laboratory strains. We describe here the generation of hsf1 gene disruption construction using PCR product of selectable marker with primers that provide homology to the hsf1 gene following separation of haploid strain in wild type yeast S. cerevisiae KNU5377. Yeast deletion overview containing replace cassette module, deletion mutant construction and strain confirmation in this study used Saccharomyces Genome Deletion Project (http:://www-sequence.standard.edu/group/yeast_deletion_project). This mutant by genetic manipulation of wild type yeast KNU5377 strain will provide a good system for analyzing the research of the molecular biology underlying their physiology and metabolic process under fermentation and improvement of their fermentative properties.